细化搜索
结果 1-10 的 127
Concentration of Selected Phenolic Compounds in Effluent, Stream and Groundwater of a Local Textile Industry in Abeokuta, Ogun State, Nigeria 全文
2024
Olayinka, Olufunmilayo | Egbeyemi, Morenikeji | Oyebanji, Adedayo
Phenols have attracted global interest in the sphere of environmental management due to their potential toxicity on human health. This study determined concentrations of three priority phenolic compounds in effluent and water of a local textile industry in Abeokuta, Nigeria. During tie-dye production, triplicates of effluent, well water, stream and control water were collected three times from five points to give a total of forty-five samples. Physicochemical parameters of samples including temperature, pH, electrical conductivity (EC), total suspended solids (TSS) and total dissolved solids (TDS) were determined according to standard methods while the concentrations of the priority phenolic compounds (4-nitrophenol, 4-chloro-3-methylphenol and 2, 4-dinitrophenol) were determined using High Performance Liquid Chromatography equipped with Ultra-Violet detector (HPLC/UV). Data obtained were subjected to descriptive (mean and standard deviation) and inferential (ANOVA) statistics. pH, EC and TSS of effluent and water samples were higher than the permissible limits of World Health Organization (WHO) and Federal Environmental Protection Agency (FEPA) while temperature of the effluent samples and TDS of the well water samples were within standard values. Higher concentrations of the priority phenolic compounds occurred in effluent than water samples but 4-nitrophenol was below detection limit (DL) in water samples. Concentrations of 4-nitrophenol, 4-chloro-3-methylphenol and 2,4-dinitrophenol in effluent exceeded stipulated standard of WHO (0.01 mg/L) and water samples. High concentrations of phenols in water bodies at the local textile industry suggest uncontrolled discharge of effluent from the industry which could eventually reach surface and ground water with potential significant health implications to the populace.
显示更多 [+] 显示较少 [-]Race-specific associations of urinary phenols and parabens with adipokines in midlife women: The Study of Women's Health Across the Nation (SWAN) 全文
2022
Lee, Seulbi | Karvonen-Gutierrez, Carrie | Mukherjee, Bhramar | Herman, William H. | Park, Sung Kyun
Adipokines, cytokines secreted by adipose tissue, may contribute to obesity-related metabolic disease. The role of environmental phenols and parabens in racial difference in metabolic disease burden has been suggested, but there is limited evidence. We examined the cross-sectional associations of urinary phenols and parabens with adipokines and effect modification by race. Urinary concentrations of 6 phenols (bisphenol-A, bisphenol-F, 2,4-diclorophenol, 2,5-diclorophenol, triclosan, benzophenone-3) and 4 parabens (methyl-paraben, ethyl-paraben, propyl-paraben, butyl-paraben) were measured in 2002–2003 among 1200 women (mean age = 52.6) enrolled in the Study of Women's Health Across the Nation Multi-Pollutant Study. Serum adipokines included adiponectin, high molecular weight (HMW)-adiponectin, leptin, soluble leptin receptor (sOB-R). Linear regression models were used to estimate the adjusted percentage change in adipokines per inter-quantile range (IQR) increase in standardized and log-transformed levels of individual urinary phenols and parabens. Bayesian kernel machine regression (BKMR) was used to evaluate the joint effect of urinary phenols and parabens as mixtures. Participants included white (52.5%), black (19.3%), and Asian (28.1%) women. Urinary 2,4-dichlorophenol was associated with 6.02% (95% CI: 1.20%, 10.83%) higher HMW-adiponectin and urinary bisphenol-F was associated with 2.60% (0.48%, 4.71%) higher sOB-R. Urinary methyl-paraben was associated with lower leptin in all women but this association differed by race: 8.58% (−13.99%, −3.18%) lower leptin in white women but 11.68% (3.52%, 19.84%) higher leptin in black women (P interaction = 0.001). No significant associations were observed in Asian women. Additionally, we observed a significant positive overall effect of urinary phenols and parabens mixtures in relation to leptin levels in black, but not in white or Asian women. Urinary bisphenol-F, 2,4-dichlorophenol and methyl-paraben may be associated with favorable profiles of adipokines, but methyl-paraben, widely used in hair and personal care products, was associated with unfavorable leptin levels in black women. Future studies are needed to confirm this racial difference.
显示更多 [+] 显示较少 [-]Effects of methanol, sodium citrate, and chlorella powder on enhanced anaerobic treatment of coal pyrolysis wastewater 全文
2022
Shi, Jingxin | Wan, Ning | Han, Hongjun
To better promote environment friendly development of the coal chemical industry, this study investigated effects of methanol, sodium citrate, and chlorella powder (a type of microalgae) as co-metabolic substances on enhanced anaerobic treatment of coal pyrolysis wastewater with anaerobic sludge. The anaerobic sludge was loaded into four 2 L anaerobic reactors for co-metabolism enhanced anaerobic experiments. Anaerobic reactor 1 (R1) as control group did not add a co-metabolic substance; anaerobic reactor 2 (R2) added methanol; anaerobic reactor 3 (R3) added sodium citrate; and anaerobic reactor 4 (R4) added chlorella powder. In the blank control group, the removal ratios of total phenol (TPh), quinoline, and indole were only 12.07%, 42.15%, and 50.47%, respectively, indicating that 50 mg/L quinoline, 50 mg/L indole, and 600 mg/L TPh produced strong toxicity inhibition function on the anaerobic microorganism in reactor. When the concentration of methanol, sodium citrate, and chlorella was 400 μg/L, the reactors with co-metabolic substances had better treatment effect on TPh. Among them, the strengthening effects of sodium citrate (TPh removal ratio: 44.87%) and chlorella (47.85%) were better than that of methanol (38.72%) and the control group (10.62%). Additionally, the reactors with co-metabolic substances had higher degradation ratios on quinoline, indole, and chemical oxygen demand (COD). The data of extracellular polymeric substances showed that with the co-metabolic substances, anaerobic microorganisms produced more humic acids by degrading phenols and nitrogen-containing heterocyclic compounds (NHCs). Compared with the control group, the reactors added with sodium citrate and chlorella had larger average particle size of sludge. Thus, sodium citrate and chlorella could improve sludge sedimentation performance by increasing the sludge particle size. The bacterial community structures of reactors were explored and the results showed that Aminicenantes genera incertae sedis, Levinea, Geobacter, Smithella, Brachymonas, and Longilinea were the main functional bacteria in reactor added with chlorella.
显示更多 [+] 显示较少 [-]Detection of semi-volatile compounds in cloud waters by GC×GC-TOF-MS. Evidence of phenols and phthalates as priority pollutants 全文
2018
Although organic species are transported and efficiently transformed in clouds, more than 60% of this organic matter remains unspeciated. Using GCxGC-HRMS technique we were able to detect and identify over 100 semi-volatile compounds in 3 cloud samples collected at the PUY station (puy de Dôme mountain, France) while they were present at low concentrations in a very small sample volume (<25 mL of cloud water). The vast majority (∼90%) of the detected compounds was oxygenated, while the absence of halogenated organic compounds should be specially mentioned. This could reflect both the oxidation processes in the atmosphere (gas and water phase) but also the need of the compounds to be soluble enough to be transferred and dissolved in the cloud droplets. Furans, esters, ketones, amides and pyridines represent the major classes of compounds demonstrating a large variety of potential pollutants. Beside these compounds, priority pollutants from the US EPA list were identified and quantified. We found phenols (phenol, benzyl alcohol, p-cresole, 4-ethylphenol, 3,4-dimethylphenol, 4-nitrophenol) and dialkylphthalates (dimethylphthalate, diethylphthalate, di-n-butylphthalate, bis-(2-ethylhexyl)-phthalate, butylbenzylphthalate, di-n-octyl phthalate). In general, the concentrations of phthalates (from 0.09 to 52 μg L−1) were much higher than those of phenols (from 0.03 to 0.74 μg L−1). To our knowledge phthalates in clouds are described here for the first time. We investigated the variability of phenols and phthalates concentrations with cloud air mass origins (marine vs continental) and seasons (winter vs summer). Although both factors seem to have an influence, it is difficult to deduce general trends; further work should be conducted on large series of cloud samples collected in different geographic areas and at different seasons.
显示更多 [+] 显示较少 [-]Correlations and adsorption mechanisms of aromatic compounds on a high heat temperature treated bamboo biochar 全文
2016
Yang, Kun | Yang, Jingjing | Jiang, Yuan | Wu, Wenhao | Lin, Daohui
Adsorption of aromatic compounds, including polycyclic aromatic hydrocarbons, nitrobenzenes, phenols, and anilines, on a bamboo biochar produced at 700 °C (Ba700) was investigated with the mechanism discussion by isotherm fitting using the Polanyi-theory based Dubinin–Ashtakhov (DA) model. Correlations of adsorption capacity (Q0) of organic compounds with their molecular sizes and melting points, as well as correlations of adsorption affinity (E) with their solvatochromic parameters (i.e., π* and αm), on the biochar, were developed and indicating that adsorption is captured by the pore filling mechanism and derived from the hydrophobic effects of organic compounds and the forming of π-π electron donor-acceptor (EDA) interactions and hydrogen bonding interactions of organic molecules with surface sites of the biochar. The effects of organic molecular sizes and melting points on adsorption capacity are ascribed to the molecular sieving effect and the packing efficiency of the organic molecules in the biochar pores, respectively. These correlations can be used to quantitatively estimate the adsorption of organic compounds on biochars from their commonly physicochemical properties including solvatochromic parameters, melting points and molecular cross-sectional area. The prediction using these correlations is important for assessing the unknown adsorption behaviors of new organic compounds and also helpful to guide the surface modification of biochars and make targeted selection in the environmental applications of biochars as adsorbents.
显示更多 [+] 显示较少 [-]Screening and health risk of organic micropollutants in rural groundwater of Liaodong Peninsula, China 全文
2016
Li, Xuehua | Shang, Xiaochen | Luo, Tianlie | Du, Xu | Wang, Ya | Xie, Qing | Matsuura, Naoki | Chen, Jingwen | Kadokami, Kiwao
Groundwater serves as a main drinking water source for rural residents in China. However, little is known regarding the pollution of organic micropollutants in groundwater that may pose health risks. In this study, more than 1300 organic micropollutants were screened in the groundwater samples collected from 13 drinking water wells distributed across five rural regions of Liaodong Peninsula in China. A total of 80 organic micropollutants including 12 polycyclic aromatic hydrocarbons, 11 alkanes, 9 pesticides, 7 substituted phenols, 7 perfluoroalkyl acids, 6 heterocyclic compounds, 5 alcohols, 5 phthalic acid esters, 5 pharmaceutical and personal care products, 3 ketones, 2 polychlorinated biphenyls (PCBs), 2 alkylbenzenes and 2 chlorinated benzenes were detected, with their total concentration of 32–1.5 × 104 ng/L. Noncarcinogenic and carcinogenic risks of a part of pollutants were assessed. Exposure through skin absorption and oral ingestion was considered in the assessment. Generally the risks are within the acceptable limits, except for that the carcinogenic risk at two sites in Jinzhou is higher than 10−6. To the best of our knowledge, this is the first report on health risks of groundwater micropollutants in China.
显示更多 [+] 显示较少 [-]An endocrine disruptor, bisphenol A, affects development in the protochordate Ciona intestinalis: Hatching rates and swimming behavior alter in a dose-dependent manner 全文
2013
Matsushima, Ayami | Ryan, Kerrianne | Shimohigashi, Yasuyuki | Meinertzhagen, Ian A.
Bisphenol A (BPA) is widely used industrially to produce polycarbonate plastics and epoxy resins. Numerous studies document the harmful effects caused by low-dose BPA exposure especially on nervous systems and behavior in experimental animals such as mice and rats. Here, we exposed embryos of a model chordate, Ciona intestinalis, to seawater containing BPA to evaluate adverse effects on embryonic development and on the swimming behavior of subsequent larvae. Ciona is ideal because its larva develops rapidly and has few cells. The rate of larval hatching decreased in a dose-dependent manner with exposures to BPA above 3 μM; swimming behavior was also affected in larvae emerging from embryos exposed to 1 μM BPA. Adverse effects were most severe on fertilized eggs exposed to BPA within 7 h post-fertilization. Ciona shares twelve nuclear receptors with mammals, and BPA is proposed to disturb the physiological functions of one or more of these.
显示更多 [+] 显示较少 [-]Contribution of a submerged membrane bioreactor in the treatment of synthetic effluent contaminated by Bisphenol-A: Mechanism of BPA removal and membrane fouling 全文
2013
Seyhi, Brahima | Drogui, Patrick | Buelna, Gerardo | Azaïs, Antonin | Heran, Marc
A submerged membrane bioreactor has been operated at the laboratory scale for the treatment of a synthetic effluent containing Bisphenol-A (BPA). COD, NH4–N, PO4–P and BPA were eliminated respectively, at 99%, 99%, 61% and 99%. The increase of volumetric loading rate from 0 to 21.6 g/m3/d did not affect the performance of the MBR system. However, the removal rate decreased rapidly when the BPA loading rate increased above 21.6 g/m3/d. The adsorption process of BPA on the biomass was very well described by Freundlich and Langmuir isotherms. Subsequently, biodegradation of BPA occurred and followed the first order kinetic reaction, with a constant rate of 1.13 ± 0.22 h−1. During treatment, membrane fouling was reversible in the first 84 h of filtration, and then became irreversible. The membrane fouling was mainly due to the accumulation of suspended solid and development of biofilm on the membrane surface.
显示更多 [+] 显示较少 [-]National inventory of alkylphenol ethoxylate compounds in U.S. sewage sludges and chemical fate in outdoor soil mesocosms 全文
2013
Venkatesan, Arjun K. | Halden, Rolf U.
We determined the first nationwide inventories of alkylphenol surfactants in U.S. sewage sludges (SS) using samples from the U.S. Environmental Protection Agency's 2001 national SS survey. Additionally, analysis of archived 3-year outdoor mesocosm samples served to determine chemical fates in SS-amended soil. Nonylphenol (NP) was the most abundant analyte (534 ± 192 mg/kg) in SS composites, followed by its mono- and di-ethoxylates (62.1 ± 28 and 59.5 ± 52 mg/kg, respectively). The mean annual load of NP and its ethoxylates in SS was estimated at 2408–7149 metric tonnes, of which 1204–4289 is applied on U.S. land. NP compounds showed observable loss from SS/soil mixtures (1:2), with mean half-lives ranging from 301 to 495 days. Surfactant levels in U.S. SS ten-times in excess of European regulations, substantial releases to U.S. soils, and prolonged half-lives found under field conditions, all argue for the U.S. to follow Europe's move from 20 years ago to regulate these chemicals.
显示更多 [+] 显示较少 [-]Ecological risk of estrogenic endocrine disrupting chemicals in sewage plant effluent and reclaimed water 全文
2013
Sun, Yan | Huang, Huang | Sun, Ying | Wang, Chao | Shi, Xiao-Lei | Hu, Hong-Ying | Kameya, Takashi | Fujie, Koichi
The long-term ecological risk of micropollutants, especially endocrine disrupting chemicals (EDCs) has threatened reclaimed water quality. In this study, estrogenic activity and ecological risk of eight typical estrogenic EDCs in effluents from sewage plants were evaluated. The estrogenic activity analysis showed that steroidal estrogens had the highest estrogenic activity (ranged from 10−1 to 103 ng-E2/L), phenolic compounds showed weaker estrogenic activity (mainly ranged from 10−3 to 10 ng-E2/L), and phthalate esters were negligible. The ecological risk of the estrogenic EDCs which was characterized by risk quotient ranged from 10−4 to 103, with an order in descending: steroids estrogens, phenolic compounds and phthalate esters. The eight estrogenic EDCs were scored and sorted based on the comparison of the estrogenic activity and the ecological risk, suggesting that 17α-ethynylestradiol (EE2), estrone (E1) and estradiol (E2) should be the priority EDCs to control in municipal sewage plants.
显示更多 [+] 显示较少 [-]