细化搜索
结果 1-10 的 39
Prevalence and sunlight photolysis of controlled and chemotherapeutic drugs in aqueous environments 全文
2014
Lin, Angela Yu-Chen | Lin, Yanjing | Lee, Wan-Ning
This study addresses the occurrences and natural fates of chemotherapeutics and controlled drugs when found together in hospital effluents and surface waters. The results revealed the presence of 11 out of 16 drugs in hospital effluents, and the maximum detected concentrations were at the μg L−1 level in the hospital effluents and the ng L−1 level in surface waters. The highest concentrations corresponded to meperidine, morphine, 5-fluorouracil and cyclophosphamide. The sunlight photolysis of the target compounds was investigated, and the results indicated that morphine and codeine can be significantly attenuated, with half-lives of 0.27 and 2.5 h, respectively, in natural waters. Photolysis can lower the detected environmental concentrations, also lowering the estimated environmental risks of the target drugs to human health. Nevertheless, 5-fluorouracil and codeine were found to have a high risk quotient (RQ), demonstrating the high risks of directly releasing hospital wastewater into the environment.
显示更多 [+] 显示较少 [-]Mechanistic considerations of photosensitized transformation of microcystin-LR (cyanobacterial toxin) in aqueous environments 全文
2014
Yan, Shuwen | Zhang, Danny | Song, Weihua
Microcystin-LR (MC-LR), one of the most common cyanotoxins, is produced by harmful cyanobacteria. The current study focuses on the photosensitized transformation of MC-LR in dissolved organic matter (DOM) enriched solutions under solar simulated irradiation. It appears that the direct energy transfer of triplet excited state DOM with MC-LR plays a key role and leads to photosensitized isomerization of Adda side chain. Furthermore a micro-heterogeneous mechanism has been proposed. Size exclude chromatograph (SEC) has been applied to explore the adsorption of MC-LR on the DOM. The adsorption phenomenon supported the fact that the pseudo first-order photodegradation rates showed positive correlation with the adsorption. The photo-transformation rate of MC-LR increases as pH decreases which is also the result of the adsorptive interaction of MC-LR with DOM. Finally two bulk water parameters (TOC and UV350 nm) have been applied to predict the photodegradation rates of MC-LR in the varied water matrixes.
显示更多 [+] 显示较少 [-]Impact of hydraulic and carbon loading rates of constructed wetlands on contaminants of emerging concern (CECs) removal 全文
2014
Sharif, Fariya | Westerhoff, Paul | Herckes, Pierre
Constructed wetlands remove trace organic contaminants via synergistic processes involving plant biomass that include hydrolysis, volatilization, sorption, biodegradation, and photolysis. Wetland design conditions, such as hydraulic loading rates (HLRs) and carbon loading rates (CLRs), influence these processes. Contaminant of emerging concern (CEC) removal by wetland plants was investigated at varying HLRs and CLRs. Rate constants and parameters obtained from batch-scale studies were used in a mechanistic model to evaluate the effect of these two loading rates on CEC removal. CLR significantly influenced CEC removal when wetlands were operated at HLR >5 cm/d. High values of CLR increased removal of estradiol and carbamazepine but lowered that of testosterone and atrazine. Without increasing the cumulative HLR, operating two wetlands in series with varying CLRs could be a way to improve CEC removal.
显示更多 [+] 显示较少 [-]Occurrence and fate of triclosan and triclocarban in a subtropical river and its estuary 全文
2014
Lv, Min | Sun, Qian | Xu, Haili | Lin, Lifeng | Chen, Meng | Yu, Chang-Ping
The occurrence of triclosan (TCS) and triclocarban (TCC) in a subtropical river (Jiulong River) and its estuary was investigated for two years. TCS and TCC were ubiquitously detected in the Jiulong River and its estuary. The levels of TCS and TCC ranged from less than the method detection limit to 64ng/L and from 0.05 to 14.1ng/L in the river, respectively. The levels of TCS and TCC in the estuary ranged from 2.56 to 27.25ng/L and 0.38 to 5.76ng/L, respectively. Temporal and spatial variations of TCS and TCC in the Jiulong River and its estuary were observed during the investigation. The weather conditions did not show significant correlations with TCS and TCC, whereas several water quality parameters showed high correlations with TCS and TCC. The microcosm studies showed that both direct photolysis and biodegradation contributed to TCS removal, whereas indirect photolysis was important for TCC removal in the surface water.
显示更多 [+] 显示较少 [-]Naphthalene degradation in seawater by UV irradiation: The effects of fluence rate, salinity, temperature and initial concentration 全文
2014
Jing, Liang | Chen, Bing | Zhang, Baiyu | Zheng, Jisi | Liu, Bo
A large amount of oil pollution at sea is produced by the operational discharge of oily wastewater. The removal of polycyclic aromatic hydrocarbons (PAHs) from such sources using UV irradiation has become attractive, yet the photolysis mechanism in seawater has remained unclear. This study examines the photodegradation kinetics of naphthalene in natural seawater through a full factorial design of experiments (DOE). The effects of fluence rate, salinity, temperature and initial concentration are investigated. Results show that fluence rate, temperature and the interaction between temperature and initial concentration are the most influential factors. An increase in fluence rate can linearly promote the photodegradation process. Salinity increasingly impedes the removal of naphthalene because of the existence of free-radical scavengers and photon competitors. The results will help understand the photolysis mechanism of PAHs and develop more effective methods for treating oily seawater generated from offshore industries.
显示更多 [+] 显示较少 [-]Photodegradation of Tri(Chloropropyl) Phosphate Solution by UV/O3 全文
2014
Ruan, Xin-Chao | Jin, Xiao | Yang, Ze-Yu | Zeng, Qing-Fu
A photodegradation technology based on the combination of ultraviolet radiation with ozone (UV/O₃) for degrading tri(chloropropyl) phosphate (TCPP) was developed in the present study. Parameters affecting the degradation of TCPP were optimized, and the developed technology was successfully applied to degrade TCPP in two real wastewater samples. The results showed that reaction time, ozone concentration, the initial acidity of reaction solution, and the initial concentration of TCPP in aqueous solution contributed to the degradation efficiency of TCPP. Under the optimized disposal conditions, 100 mg/L of TCPP aqueous solution with a pH value of 7 can be degraded effectively in 60 min with an ozone concentration of 66.2 mg/L. In detail, the yield rates of Cl⁻and PO₄³⁻was high up to 98.9 and 98.2 %, respectively; and total organic carbon (TOC) removal rate was high up to 94.3 %. Method application demonstrated that TCPP can be degraded effectively in pond water. However, only 83.2 and 61.9 % of Cl⁻and PO₄³⁻were produced, and the TOC removal rate was only 81.3 % after 60 min exposure in the effluent discharged from a wastewater treatment plant. Therefore, the presence of interferences may hinder the degradation of TCPP in real wastewater, but its potential application for real wastewater is promising in the future after appropriate domestication and evaluation.
显示更多 [+] 显示较少 [-]Separation of Sulfur Hexafluoride from a Nitrogen/Sulfur Hexafluoride Mixture Using a Polymer Hollow Fiber Membrane 全文
2014
Choi, Jae-Woo | Lee, Soonjae | An, Byungryul | Kim, Sŏng-bae | Yi, Sang-hyŏp
Sulfur hexafluoride (SF₆) has been evaluated by the Intergovernmental Panel on Climate Change (IPCC) as the substance with the highest global warming index. Because of its superior insulating and arc clearing capacities, it is commonly used as an insulator in electrical machines. SF₆waste products form in the process of storing, maintaining, and repairing the machines. SF₆emitted into the atmosphere remains for 3,200 years, causing global warming. Release into the mesosphere leads to photolysis and creation of highly toxic and corrosive by-products. A review of the literature related to the retrieval and separation of SF₆using a separating membrane indicates that research on the permeability of the separating membrane material is lacking. Additionally, research on the concentrations of the SF₆waste products and the separation/retrieval with operating conditions with optimal energy efficiency is only in the initial stages. Therefore, this research assessed the permeability of commercialized separation membranes polysulfone (PSf), polycarbonate (PC), and polyimide (PI) using the gases SF₆and N₂. Using an SF₆/N₂mixture with the same concentration as the SF₆waste products, we studied the separation and retrieval capacities of PSf, PC, and PI separation membranes under varying operating conditions. The permeability tests showed that the selective permeability of N₂/SF₆is highest for the PI membrane and lowest for the PC membrane. When the concentrations of SF₆retrieved from the mixture separation process were compared, the PC membrane was found to be the highest, with 95.6 % at 0.5 MPa. The retrieval percentage of SF₆was highest for PSf, with 97.8 % at an operating pressure of 0.3 MPa and a waste production of 150 cm³/min. The retrieval rates and retrieval failure rates have an inverse relationship. In total, 99 % of the supply of SF₆was identified via the retrieval rates and retrieval failure rates, so it could be confirmed that the separation of the SF₆/N₂mixture using a macromolecular hollow fiber separation membrane works properly.
显示更多 [+] 显示较少 [-]Degradation of Selected Pharmaceuticals in Coastal Wetland Water and Sediments 全文
2014
Thuy, Hoang Thi Thanh | Loan, Tu Thi Cam
Ciprofloxacin, griseofulvin, and rifampicin are three human antibiotics that are also widely used in the shrimp culture of Cangio coastal wetland (Vietnam, 10° 24’ 38” N, 106° 57’ 17” E). They have been detected in shrimp larvae pond and receiving water bodies. However, the environmental fate of these antibiotics in coastal wetland milieu is currently unknown. The aim of this study was to determine the degradation potential of these antibiotics in water and sediments from Cangio coastal wetlands. The effects of light, microbial activities, and presence of sediments on the degradation of all three antibiotics were investigated in “water-only” and “water–sediment” experiments. Results indicate that the environmental fate of those antibiotics was quite complex. Photodegradation seemed to play a major role in “water-only” system, since shorter t ₁/₂ was observed for ciprofloxacin, griseofulvin, and rifampicin, with light than in the dark, for both sterile and non-sterile conditions. Biodegradation played a minor role in the disappearance of the antibiotics and was overlaid by photodegradation. In addition, sorption to sediment was of major importance for antibiotics, especially for ciprofloxacin and rifampicin. The t ₁/₂ of these antibiotics in aqueous phase of “water–sediment” system was higher than for “water-only” experiments, indicating that a part of antibiotics were adsorbed by sediment. The biodegradation did not play a major role on sediment sorption of CIP and RIF, since no statistically significant differences between non-sterile and sterile conditions were observed. Only for GRI, the impact of the biodegradation to the sediment sorption could be found and led to the weak affinity to sediment sorption of this antibiotic. All three antibiotics were more sensitive to photodegradation than to biodegradation; however, the degradation rate was low. In addition, the sorption by sediment occurred also with a slow rate, so these antibiotics could recalcitrant persist in the coastal wetland environment.
显示更多 [+] 显示较少 [-]Photo-assisted Electrochemical Degradation of Textile Effluent to Reduce Organic Halide (AOX) Production 全文
2014
Alves, Patrícia Aparecida | Johansen, Herbert Duchatsch | Neto, Sidney Aquino | de Andrade, Adalgisa R. | Motheo, Artur de Jesus | Malpass, Geoffroy Roger Pointer
The application of combined electrochemical and photochemical techniques for the degradation of real textile effluent is presented. It is demonstrated that the simultaneous use of both techniques, in conjunction with in situ generation of free chlorine and its subsequent photolysis, is a promising technique for removing color and chemical oxygen demand (COD) from effluents. Crucially, the combination of electrochemical and photochemical techniques leads to lower quantities of chlorine-containing degradation by-products being produced and no overall increase in toxicity. Over the treatment times studied, up to 65 % less chloride-containing degradation by-products are formed while at the same time greater rates of color and COD removal are achieved.
显示更多 [+] 显示较少 [-]TiO2-Mediated Photodegradation of Aqueous Trinitrophenol Irradiated by an Artificial Light Source 全文
2014
Yuan, Yue | Li, Hai | Luo, Mingliang | Qin, Song | Luo, Wengfeng | Li, Lixin | Yan, Hongjian
TiO₂-mediated photodegradation is widely reported to degrade recalcitrant pollutants such as nitrophenolics. This paper investigated the TiO₂-mediated photodegradation of trinitrophenol (TNP) in aqueous solution irradiated by an artificial light source. About 28.4 % TNP degradation was attained over 450 min from an initial TNP concentration of 1,000 mg L⁻¹. Ionic chromatographic analysis further revealed the evolution of nitrite and nitrate anions and an unknown intermediate X during the photodegradation process. The trends of nitrite and nitrate anions indicate that the photodegradation process produced nitrite at first, which subsequently turned to nitrate in the presence of oxygen. The removal rate of COD was far slower than that of TNP, inferring the photodegradation reaction gradually mineralized the parent pollutants. The photodegradation of TNP could not proceed under anaerobic condition, presumably a result of oxygen deficiency that disabled the denitration process. Because of the volumetric loss of the test solution, follow-up irradiations were performed after addition of supplementary water. This follow-up irradiation period revealed that direct photolysis, i.e., irradiation in the absence of TiO₂photocatalysts, could not photodegrade TNP but gradually diminish the component X.
显示更多 [+] 显示较少 [-]