细化搜索
结果 1-5 的 5
Spatio-temporal variability of malaria infection in Chahbahar County, Iran: association with the ENSO and rainfall variability
2022
Nazemosadat, Seyed Mohammad Jafar | Shafiei, Reza | Ghaedamini, Habib | Najjari, Mohsen | Nazemosadat-Arsanjani, Zahra | Hatam, Gholamreza
Malaria is one of the most widespread communicable diseases in the southeast regions of Iran, particularly the Chabahar County. Although the outbreak of this disease is a climate-related phenomenon, a comprehensive analysis of the malaria-climate relationship has not yet been investigated in Iran. The aims of this study are as follows: a) analyzing the seasonal characteristics of the various species of the infection; b) differentiating between number of patients during El Niño and La Niña and also during the wet and dry years. The monthly malaria statistics collected from twelve health centers were firstly averaged into seasonal scale and then composited with the corresponding data of the ground-based meteorological records, Southern Oscillation Index (SOI), and the satellite-based rainfall data. The proper statistical tests were used to detect differences in the number of patients between El Niño and La Niña and also between the adopted wet and dry episodes. Infection rate from the highest to the lowest was associated with summer, autumn, spring, and winter, respectively. Plasmodium falciparum, P. vivax, and the other species were responsible for 22%, 75%, and 3% of the sickness, respectively. The outbreak of P. falciparum/P. vivax occurs during autumn/summer. Due to the malaria eradication programs in urban areas, infection statistics collected from the rural areas were found to be more climate-related than that of urban regions. For rural/urban areas, the infection statistics exhibited a significant decline/increase during El Niño episodes. In autumn, spring, and winter, the patient number has significantly increased/decreased during the dry/wet years, respectively. These relationships were, however, reversed in summer.
显示更多 [+] 显示较少 [-]Weather integrated malaria prediction system using Bayesian structural time series model for northeast states of India
2022
Vavilala, Hariprasad | Yaladanda, Nikhila | Krishna Kondeti, Phani | Rafiq Unissa, | Mopuri, Rajasekhar | Gouda, Krushna Chandra | Rao Bhimala, Kantha | Rao Kadiri, Madhusudhan | Upadhyayula, Suryanaryana Murty | Rao Mutheneni, Srinivasa
Malaria is an endemic disease in India and targeted to eliminate by the year 2030. The present study is aimed at understanding the epidemiological patterns of malaria transmission dynamics in Assam and Arunachal Pradesh followed by the development of a malaria prediction model using monthly climate factors. A total of 144,055 cases in Assam during 2011–2018 and 42,970 cases in Arunachal Pradesh were reported during the 2011–2019 period observed, and Plasmodium falciparum (74.5%) was the most predominant parasite in Assam, whereas Plasmodium vivax (66%) in Arunachal Pradesh. Malaria transmission showed a strong seasonal variation where most of the cases were reported during the monsoon period (Assam, 51.9%, and Arunachal Pradesh, 53.6%). Similarly, the malaria incidence was highest in the male population in both states (Asam, 55.75%, and Arunachal Pradesh, 51.43%), and the disease risk is also higher among the > 15 years age group (Assam, 61.7%, and Arunachal Pradesh, 67.9%). To predict the malaria incidence, Bayesian structural time series (BSTS) and Seasonal Auto-Regressive Integrated Moving Average with eXogenous factors (SARIMAX) models were implemented. A statistically significant association between malaria cases and climate variables was observed. The most influencing climate factors are found to be maximum and mean temperature with a 6-month lag, and it showed a negative association with malaria incidence. The BSTS model has shown superior performance on the optimal auto-correlated dataset (OAD) which contains auto-correlated malaria cases, cross-correlated climate variables besides malaria cases in both Assam (RMSE, 0.106; MAE, 0.089; and SMAPE, 19.2%) and Arunachal Pradesh (RMSE, 0.128; MAE, 0.122; and SMAPE, 22.6%) than the SARIMAX model. The findings suggest that the predictive performance of the BSTS model is outperformed, and it may be helpful for ongoing intervention strategies by governmental and nongovernmental agencies in the northeast region to combat the disease effectively.
显示更多 [+] 显示较少 [-]Managing wastes as green resources: cigarette butt-synthesized pesticides are highly toxic to malaria vectors with little impact on predatory copepods
2018
Murugan, Kadarkarai | Suresh, Udaiyan | Panneerselvam, Chellasamy | Rajaganesh, Rajapandian | Roni, Mathath | Aziz, AlThabiani | Hwang, Jiang-Shiou | Sathishkumar, Kuppusamy | Rajasekar, Aruliah | Kumar, Suresh | Alarfaj, AbdullahA. | Higuchi, Akon | Benelli, Giovanni
The development of novel mosquito control tools is a key prerequisite to build effective and reliable Integrated Vector Management strategies. Here, we proposed a novel method using cigarette butts for the synthesis of Ag nanostructures toxic to young instars of the malaria vector Anopheles stephensi, chloroquine (CQ)-resistant malaria parasites Plasmodium falciparum and microbial pathogens. The non-target impact of these nanomaterials in the aquatic environment was evaluated testing them at sub-lethal doses on the predatory copepod Mesocyclops aspericornis. Cigarette butt-synthesized Ag nanostructures were characterized by UV–vis and FTIR spectroscopy, as well as by EDX, SEM and XRD analyses. Low doses of cigarette butt extracts (with and without tobacco) showed larvicidal and pupicidal toxicity on An. stephensi. The LC₅₀ of cigarette butt-synthesized Ag nanostructures ranged from 4.505 ppm (I instar larvae) to 8.070 ppm (pupae) using smoked cigarette butts with tobacco, and from 3.571 (I instar larvae) to 6.143 ppm (pupae) using unsmoked cigarette butts without tobacco. Smoke toxicity experiments conducted against adults showed that unsmoked cigarette butts-based coils led to mortality comparable to permethrin-based positive control (84.2 and 91.2%, respectively). A single treatment with cigarette butts extracts and Ag nanostructures significantly reduced egg hatchability of An. stephensi. Furthermore, the antiplasmodial activity of cigarette butt extracts (with and without tobacco) and synthesized Ag nanostructures was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of P. falciparum. The lowest IC₅₀ values were achieved by cigarette butt extracts without tobacco, they were 54.63 μg/ml (CQ-s) and 63.26 μg/ml (CQ-r); while Ag nanostructure IC₅₀ values were 72.13 μg/ml (CQ-s) and 77.33 μg/ml (CQ-r). In MIC assays, low doses of the Ag nanostructures inhibited the growth of Bacillus subtilis, Klebsiella pneumoniae and Salmonella typhi. Finally, the predation efficiency of copepod M. aspericornis towards larvae of An. stephensi did not decrease in a nanoparticle-contaminated environment, if compared to control predation assays. Overall, the present research would suggest that an abundant hazardous waste, such as cigarette butts, can be turned to an important resource for nanosynthesis of highly effective antiplasmodials and insecticides.
显示更多 [+] 显示较少 [-]Eco-friendly drugs from the marine environment: spongeweed-synthesized silver nanoparticles are highly effective on Plasmodium falciparum and its vector Anopheles stephensi, with little non-target effects on predatory copepods
2016
Mosquitoes act as vectors of devastating pathogens and parasites, representing a key threat for millions of humans and animals worldwide. The control of mosquito-borne diseases is facing a number of crucial challenges, including the emergence of artemisinin and chloroquine resistance in Plasmodium parasites, as well as the presence of mosquito vectors resistant to synthetic and microbial pesticides. Therefore, eco-friendly tools are urgently required. Here, a synergic approach relying to nanotechnologies and biological control strategies is proposed. The marine environment is an outstanding reservoir of bioactive natural products, which have many applications against pests, parasites, and pathogens. We proposed a novel method of seaweed-mediated synthesis of silver nanoparticles (AgNP) using the spongeweed Codium tomentosum, acting as a reducing and capping agent. AgNP were characterized by UV–Vis spectroscopy, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). In mosquitocidal assays, the 50 % lethal concentration (LC₅₀) of C. tomentosum extract against Anopheles stephensi ranged from 255.1 (larva I) to 487.1 ppm (pupa). LC₅₀ of C. tomentosum-synthesized AgNP ranged from 18.1 (larva I) to 40.7 ppm (pupa). In laboratory, the predation efficiency of Mesocyclops aspericornis copepods against A. stephensi larvae was 81, 65, 17, and 9 % (I, II, III, and IV instar, respectively). In AgNP contaminated environment, predation was not affected; 83, 66, 19, and 11 % (I, II, III, and IV). The anti-plasmodial activity of C. tomentosum extract and spongeweed-synthesized AgNP was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. Fifty percent inhibitory concentration (IC₅₀) of C. tomentosum were 51.34 μg/ml (CQ-s) and 65.17 μg/ml (CQ-r); C. tomentosum-synthesized AgNP achieved IC₅₀ of 72.45 μg/ml (CQ-s) and 76.08 μg/ml (CQ-r). Furthermore, low doses of the AgNP inhibited the growth of Bacillus subtilis, Klebsiella pneumoniae, and Salmonella typhi, using the agar disk diffusion and minimum inhibitory concentration protocol. Overall, C. tomentosum metabolites and spongeweed-synthesized AgNP may be potential candidates to develop novel and effective tools in the fight against Plasmodium parasites and their mosquito vectors. The employ of ultra-low doses of nanomosquitocides in synergy with cyclopoid crustaceans seems a promising green route for effective mosquito control programs.
显示更多 [+] 显示较少 [-]Multipurpose effectiveness of Couroupita guianensis-synthesized gold nanoparticles: high antiplasmodial potential, field efficacy against malaria vectors and synergy with Aplocheilus lineatus predators
2016
Subramaniam, Jayapal | Murugan, Kadarkarai | Panneerselvam, Chellasamy | Kovendan, Kalimuthu | Madhiyazhagan, Pari | Dinesh, Devakumar | Kumar, Palanisamy Mahesh | Chandramohan, Balamurugan | Suresh, Udaiyan | Rajaganesh, Rajapandian | Alsalhi, Mohamad Saleh | Devanesan, Sandhanasamy | Nicoletti, Marcello | Canale, Angelo | Benelli, Giovanni
Mosquito-borne diseases represent a deadly threat for millions of people worldwide. According to recent estimates, about 3.2 billion people, almost half of the world’s population, are at risk of malaria. Malaria control is particularly challenging due to a growing number of chloroquine-resistant Plasmodium and pesticide-resistant Anopheles vectors. Newer and safer control tools are required. In this research, gold nanoparticles (AuNPs) were biosynthesized using a cheap flower extract of Couroupita guianensis as reducing and stabilizing agent. The biofabrication of AuNP was confirmed by UV–vis spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), energy-dispersive X-ray (EDX) spectroscopy, X-ray diffraction (XRD), zeta potential, and particle size analysis. AuNP showed different shapes including spheres, ovals, and triangles. AuNPs were crystalline in nature with face-centered cubic geometry; mean size was 29.2–43.8 nm. In laboratory conditions, AuNPs were toxic against Anopheles stephensi larvae, pupae, and adults. LC₅₀ was 17.36 ppm (larva I), 19.79 ppm (larva II), 21.69 ppm (larva III), 24.57 ppm (larva IV), 28.78 ppm (pupa), and 11.23 ppm (adult). In the field, a single treatment with C. guianensis flower extract and AuNP (10 × LC₅₀) led to complete larval mortality after 72 h. In standard laboratory conditions, the predation efficiency of golden wonder killifish, Aplocheilus lineatus, against A. stephensi IV instar larvae was 56.38 %, while in an aquatic environment treated with sub-lethal doses of the flower extract or AuNP, predation efficiency was boosted to 83.98 and 98.04 %, respectively. Lastly, the antiplasmodial activity of C. guianensis flower extract and AuNP was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. IC₅₀ of C. guianensis flower extract was 43.21 μg/ml (CQ-s) and 51.16 μg/ml (CQ-r). AuNP IC₅₀ was 69.47 μg/ml (CQ-s) and 76.33 μg/ml (CQ-r). Overall, our results showed the multipurpose effectiveness of C. guianensis-synthesized AuNPs, since they may be proposed as newer and safer tools in the fight against CQ-r strains of P. falciparum and for field control of malaria vectors, in synergy with wonder killifish predators.
显示更多 [+] 显示较少 [-]