细化搜索
结果 1-10 的 74
Differential accumulation of mercury and other trace metals in the food web components of a reservoir impacted by a chlor-alkali plant (Flix, Ebro River, Spain): Implications for biomonitoring
2011
Soto, David X. | Roig, Romero | Gacia, Esperança | Catalan, Jordi
Comparative studies of biomonitors of trace metal contamination are relatively scarce. We took advantage of a point source pollution in a reservoir (Flix, Spain) to compare trace metal (Hg, Pb, Cd, Se, As, Zn, Cu, Cr) bioaccumulation patterns among 16 food web components. Our results indicate that most organisms are suitable for Hg biomonitoring, whereas other metals are better monitored by only some of them. Biofilms and zebra mussel were the organisms with larger and more diverse biomonitoring capacity. However, we show that using groups of biomonitors increase the scope and strengths of the conclusions and specific goals can be better addressed. We conclude providing an overview of the strengths and weaknesses of the main organisms considered for biomonitoring trace metals in rivers and reservoirs.
显示更多 [+] 显示较少 [-]Identifying natural and anthropogenic sources of metals in urban and rural soils using GIS-based data, PCA, and spatial interpolation
2009
Davis, Harley T. | Aelion, C Marjorie | McDermott, Suzanne | Lawson, Andrew B.
Determining sources of neurotoxic metals in rural and urban soils is important for mitigating human exposure. Surface soil from four areas with significant clusters of mental retardation and developmental delay (MR/DD) in children, and one control site were analyzed for nine metals and characterized by soil type, climate, ecological region, land use and industrial facilities using readily available GIS-based data. Kriging, principal component analysis (PCA) and cluster analysis (CA) were used to identify commonalities of metal distribution. Three MR/DD areas (one rural and two urban) had similar soil types and significantly higher soil metal concentrations. PCA and CA results suggested that Ba, Be and Mn were consistently from natural sources; Pb and Hg from anthropogenic sources; and As, Cr, Cu, and Ni from both sources. Arsenic had low commonality estimates, was highly associated with a third PCA factor, and had a complex distribution, complicating mitigation strategies to minimize concentrations and exposures. GIS-based data, principal component and cluster analysis identified complex distributions of metals in soils in areas with clusters of mental retardation and developmental delay.
显示更多 [+] 显示较少 [-]Source identification of copper, lead, nickel, and zinc loading in wastewater reclamation plant influents from corrosion of brass in plumbing fixtures
2009
Kimbrough, David Eugene
A natural experiment indicated that a link between the presence and concentration of four elements, copper, lead, nickel, and zinc in the influent to two wastewater reclamation plants to the presence and concentrations of the same four elements in the tap water of residential properties. There were 36 populations of results that were assessed for the normality of their distribution, the difference in their median concentrations, the similarity in the ratios of their median concentrations, and the correlations of the concentrations. The results of this study suggest that brass corrosion is the major source of these four elements in the water reclamation plants influent and that there are two distinct populations of brass sources, those in the early stages of dezincification where the release of the non-copper elements is dominant and those in the later stages where the release of copper dominates and the type of brass that is corroding. Statistical analysis of residential tap waters and water reclamation plant influent showed that metals found in both came from brass corrosion.
显示更多 [+] 显示较少 [-]Patterns and sources of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans in surficial sediments of Lakes Erie and Ontario
2008
Shen, Li | Gewurtz, Sarah B. | Reiner, Eric J. | MacPherson, Karen A. | Kolic, Terry M. | Helm, Paul A. | Brindle, Ian D. | Marvin, Chris H.
This study determines spatial trends and congener patterns of 2378-substituted polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) in surficial sediments of Lakes Erie and Ontario. Sediments are enriched in 2378-PCDFs in Lake Ontario, and the PCDD/F concentrations increased from shallow near-shore sediments towards deep-water depositional zone sediments. In Lake Erie, sediments were dominated by octachlorodibenzo-p-dioxin, and the highest PCDD/F concentrations were observed in the western basin and the southern shoreline of the central basin with a decrease towards the eastern basin and the northern shoreline of the central basin. Principal components analysis revealed that chemical manufacture and disposal of chemical waste along the Niagara River has been a major PCDD/F source to Lake Ontario; while PCDD/Fs in Lake Erie are from multiple sources including industrial sources along the Detroit River, major tributaries along the southern shoreline of the lake, and atmospherically-derived material from the upper lakes and connecting channels. Lake-wide 2378-PCDD/F congener patterns are first reported in L. Erie and L. Ontario sediments.
显示更多 [+] 显示较少 [-]Polycyclic aromatic hydrocarbons in soils and sediments in Southwest Nigeria
2020
Parra, Yendry Jomolca | Oloyede, Oyedibu Oyebayo | Pereira, Guilherme Martins | de Almeida Lima, Paulo Henrique Amaro | da Silva Caumo, Sofia Ellen | Morenikeji, Olajumoke Abimbola | de Castro Vasconcellos, Pérola
Polycyclic Aromatic Hydrocarbons are strongly associated with agricultural, residential, transportation, and industrial activities. This study determined by GC-MS the concentration of 15 PAHs in soil and sediments at different sites from the Awotan-Asunle dumpsite area in the Southwestern region of Nigeria, which is one of the largest dumpsites in Africa. The sources of contamination, toxicity and associated risks for human health were also evaluated. Total PAHs concentrations were from 489 to 5616 μg kg⁻¹, and 642–2159 μg kg⁻¹, for soil and sediment, respectively. For soils, the highest values were observed for indeno[1,2,3-c,d]pyrene, coronene, and phenanthrene, while for sediments, the most abundant species were pyrene, fluoranthene and phenanthrene. Diagnostic ratios were used to determine the sources of PAHs and suggested that the compounds were mainly emitted from non-traffic sources. The total BaP-TEQ and BaP-MEQ for soils did not exceed the value recommended by the Canadian guideline since the country does not present guidelines. The analysis of incremental lifetime cancer risk was high mostly for dermal and ingestion exposures in the population. This study might provide valuable information regarding exposure to PAHs in soils of a Nigerian community.
显示更多 [+] 显示较少 [-]A 3D-hydrodynamic model for predicting the environmental fate of chemical pollutants in Xiamen Bay, southeast China
2020
Ma, Liya | Lin, Bin-Le | Chen, Can | Horiguchi, Fumio | Eriguchi, Tomomi | Li, Yongyu | Wang, Xinhong
Simulation model is very essential for predicting the environmental fate and the potential environmental consequences of chemical pollutants including those from accidental chemical spills. However very few of such simulation model is seen related to Chinese costal water body. As the first step toward our final goal to develop a simulation model for the prediction and the risk assessment of chemical pollutants in Chinese coastal water, this study developed a three-dimensional (3D) hydrodynamic model of Xiamen Bay (XMB). This hydrodynamic model was externally derived by meteorological data, river discharge and boundary conditions of XMB. We used the model to calculate the physical factors, especially water temperature, salinity and flow field, from June to September 2016 in XMB. The results demonstrated a good match between observations and simulations, which underscores the feasibility of this model in predicting the spatial-temporal concentration of chemical pollutants in the coastal water of XMB. Longitudinal salinity distributions and the mixing profile of river-sea interactions are discussed, including the obvious gradation of salinity from the river towards sea sites shown by the model. We further assumed that 1000 kg and 1000 mg/L of a virtual chemical pollutant leaked out from Jiulong River (JR) estuary (point source) and whole XMB (non-point source), respectively. The model illustrates that it takes three months for XMB to become purified when point source pollution occurs in the estuary, while half a year to be required in the case of non-point source pollution across the entire bay. Moreover, the model indicated that pollutants can easily accumulate in the western coastal zone and narrow waters like Maluan Bay, which can guide environmental protection strategies.
显示更多 [+] 显示较少 [-]Using the compound system to synthetically evaluate the enrichment of heavy metal(loid)s in a subtropical basin, China
2020
Zhang, Hua | Zeng, Huan | Jiang, Yinghui | Xie, Zhenglei | Xu, Xiaoling | Ding, Mingjun | Wang, Peng
A compound system involving three matrices (water, sediment, and paddy soil) was conceived to determine the potential sources of metal(loid)s (Ti, Fe, Co, Ni, Cu, Zn, As, Cd, Pb, and U) and synthetically evaluate their pollution levels in the Le’an River basin. The result indicated that the established background values (BVs) of paddy soil and sediment in the compound system were obviously higher than those of the upper continental crust (UCC) and soils from Jiangxi Province, a difference which was especially marked for sediment. The concentrations of Cu, Zn, As, Cd in the system had high coefficients of variation (CVs), and metal(loid)s in sediment showed higher levels than those in paddy soil, except for Pb. Cd and Cu in the system had the highest Ef levels, which probably pose a high risk to organisms and the health of local residents. There were significantly linear relationships between the site rank index (SRI) for water and that for sediment or paddy soil, revealing that matrices in the system interacted with each other. Principal component analysis (PCA) and absolute principal component scores and multiple linear regression model (APCS-MLR) results demonstrated that Cu, Zn, As, Cu, Pb, and U enrichments in the system were mainly affected by mining activities and were predominately deposited in sediment. Point pollution sources rather than non-point pollution sources such as mining activities, contributed most of the anthropogenic metal(loid)s to sediment. Both SRI and Hierarchical cluster analysis (HCA) results visually showed that S5, S8, S9, S10, S11, and S12 severe pollution grouped together and scattered through areas with extensive mining activities, while other sites with moderate pollution were spread along the main stream of the Le’an River.
显示更多 [+] 显示较少 [-]Occurrence and characteristics of microplastics in the Haihe River: An investigation of a seagoing river flowing through a megacity in northern China
2020
Liu, Yang | Zhang, JiaoDi | Cai, ChuanYang | He, Yong | Chen, LiYuan | Xiong, Xiong | Huang, HuiJing | Tao, Shu | Liu, Wenxin
Freshwater systems serve as important sources and transportation routes for marine microplastic pollution, and inadequate attention has been paid to this situation. Data on microplastic pollution of typical seagoing rivers in northern China are lacking. In the current study, we investigated the distribution and characteristics of microplastics in the main stream of the Haihe River, which flows through a metropolis with a high population density and level of industrialization and then flows into the Bohai Sea. The microplastic samples were collected by manta trawls with pore sizes of 333 μm, and the microplastic concentrations ranged from 0.69 to 74.95 items/m³. Fibers dominated in the surface water of the Haihe River; their shapes that were categorized as fibers, film, foam, fragments, and spheres, and contributed 17.4–86.7% of the total microplastics studied. The size distribution of the microplastics was concentrated in a range of 100–1000 μm, with 54.7% of the total sizes corresponding to the 333-μm trawl. Micro-Fourier transform infrared (μ-FT-IR) spectra showed that the main components were polyethylene, poly(ethylene-propylene) copolymer, and polypropylene. Scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) measurements revealed scratches, micropores, and cracks on the surfaces of the microplastics due to mechanical friction, chemical oxidation and degradation processes. The results of this study confirmed the high abundance and high diversity of microplastics in an urban river and indicated appreciable impacts from point-source inputs on the microplastic pollution, such as effluents from wastewater treatment plants (WWTPs).
显示更多 [+] 显示较少 [-]Quantifying the contributions of local emissions and regional transport to elemental carbon in Thailand
2020
Xing, Li | Li, Guohui | Pongpiachan, Siwatt | Wang, Qiyuan | Han, Yongming | Cao, Junji | Tipmanee, Danai | Palakun, Jittree | Aukkaravittayapun, Suparerk | Surapipith, Vanisa | Poshyachinda, Saran
We used the Weather Research and Forecasting Model coupled with Chemistry (WRF-Chem) to simulate elemental carbon (EC) concentrations in Thailand in 2017. The goals were to quantify the respective contributions of local emissions and regional transport outside Thailand to EC pollution in Thailand, and to identify the most effective emission control strategy for decreasing EC pollution. The simulated EC concentrations in Chiang Mai, Bangkok, and Phuket were comparable with the observation data. The correlation coefficient between the simulated and observed EC concentrations was 0.84, providing a good basis for evaluating EC sources in Thailand. The simulated mean EC concentration over the whole country was the highest (1.38 μg m⁻³) in spring, and the lowest (0.51 μg m⁻³) in summer. We conducted several sensitivity simulations to evaluate EC sources. Local emissions (including anthropogenic and biomass burning emissions) and regional transport outside Thailand contributed 81.2% and 18.8% to the annual mean EC concentrations, respectively, indicating that local sources played the dominant role for EC pollution in Thailand. Among the local sources, anthropogenic emissions (including the industry, power plant, residential, and transportation sectors) and biomass burning contributed 75.1% and 6.1% to the annual mean EC concentrations, respectively. As the anthropogenic emissions dominated the EC pollution, we performed four sensitivity simulations by reducing 30% of the emissions from each of the industry, power plant, residential, and transportation sectors in Thailand. The results indicated that controlling transportation emissions in Thailand was the most effective way in reducing the EC pollution. The 30% reduction of transportation emissions decreased the annual mean EC concentrations by 12.1%. In contrast, 30% reductions of the residential, industry, and power plant emissions caused 8.4%, 6.4%, and 4.0% decreases in the annual mean EC concentrations, respectively. The model results could potentially provide useful information for air pollution control strategies in Thailand.
显示更多 [+] 显示较少 [-]Environmentally relevant methylmercury exposure reduces the metabolic scope of a model songbird
2019
Gerson, Alexander R. | Cristol, Daniel A. | Seewagen, Chad L.
For most birds, energy efficiency and conservation are paramount to balancing the competing demands of self-maintenance, reproduction, and other demanding life history stages. Yet the ability to maximize energy output for behaviors like predator escape and migration is often also critical. Environmental perturbations that affect energy metabolism may therefore have important consequences for fitness and survival. Methylmercury (MeHg) is a global pollutant that has wide-ranging impacts on physiological systems, but its effects on the metabolism of birds and other vertebrates are poorly understood. We investigated dose-dependent effects of dietary MeHg on the body composition, basal and peak metabolic rates (BMR, PMR), and respiratory quotients (RQ) of zebra finches (Taeniopygia guttata). Dietary exposure levels (0.0, 0.1, or 0.6 ppm wet weight) were intended to reflect a range of mercury concentrations found in invertebrate prey of songbirds in areas contaminated by atmospheric deposition or point-source pollution. We found adiposity increased with MeHg exposure. BMR also increased with exposure while PMR decreased, together resulting in reduced metabolic scope in both MeHg-exposed treatments. There were differences in RQ among treatments that suggested a compromised ability of exposed birds to rapidly metabolize carbohydrates during exercise in a hop-hover wheel. The elevated BMR of exposed birds may have been due to energetic costs of depurating MeHg, whereas the reduced PMR could have been due to reduced oxygen carrying capacity and/or reduced glycolytic capacity. Our results suggest that environmentally relevant mercury exposure is capable of compromising the ability of songbirds to both budget and rapidly exert energy.
显示更多 [+] 显示较少 [-]