细化搜索
结果 1-3 的 3
Exposure to environmentally-relevant levels of ozone negatively influence pollen and fruit development
2015
Gillespie, Colin | Stabler, Daniel | Tallentire, Eva | Goumenaki, Eleni | Barnes, Jeremy
A combination of in vitro and in vivo studies on tomato (Lycopersicon esculentum Mill. cv. Triton) revealed that environmentally-relevant levels of ozone (O3) pollution adversely affected pollen germination, germ tube growth and pollen-stigma interactions – pollen originating from plants raised in charcoal-Purafil® filtered air (CFA) exhibited reduced germ tube development on the stigma of plants exposed to environmentally-relevant levels of O3. The O3-induced decline in in vivo pollen viability was reflected in increased numbers of non-fertilized and fertilized non-viable ovules in immature fruit. Negative effects of O3 on fertilization occurred regardless of the timing of exposure, with reductions in ovule viability evident in O3 × CFA and CFA × O3 crossed plants. This suggests O3-induced reductions in fertilization were associated with reduced pollen viability and/or ovule development. Fruit born on trusses independently exposed to 100 nmol mol−1 O3 (10 h d−1) from flowering exhibited a decline in seed number and this was reflected in a marked decline in the weight and size of individual fruit – a clear demonstration of the direct consequence of the effects of the pollutant on reproductive processes. Ozone exposure also resulted in shifts in the starch and ascorbic acid (Vitamin C) content of fruit that were consistent with accelerated ripening. The findings of this study draw attention to the need for greater consideration of, and possibly the adoption of weightings for the direct impacts of O3, and potentially other gaseous pollutants, on reproductive biology during ‘risk assessment’ exercises.
显示更多 [+] 显示较少 [-]In vitro toxicity of silver nanoparticles to kiwifruit pollen exhibits peculiar traits beyond the cause of silver ion release
2013
Speranza, Anna | Crinelli, Rita | Scoccianti, Valeria | Taddei, Anna Rita | Iacobucci, Marta | Bhattacharya, Priyanka | Ke, Pu Chun
The vast use of silver nanoparticles (AgNPs) mandates thorough investigation of their impact on biosystems at various levels. The cytotoxicity of PVP coated-AgNPs to pollen, the aploid male gametophyte of higher plants, has been assessed here for the first time. The negative effects of AgNPs include substantial decreases in pollen viability and performance, specific ultrastructural alterations, early changes in calcium content, and unbalance of redox status. Ag+ released from AgNPs damaged pollen membranes and inhibited germination to a greater extent than the AgNPs themselves. By contrast, the AgNPs were more potent at disrupting the tube elongation process. ROS deficiency and overproduction were registered in the Ag+- and AgNP-treatment, respectively. The peculiar features of AgNP toxicity reflected their specific modes of interaction with pollen surface and membranes, and the dynamic exchange between coating (PVP) and culture medium. In contrast, the effects of Ag+ were most likely induced through chemical/physicochemical interactions.
显示更多 [+] 显示较少 [-]Pd-nanoparticles cause increased toxicity to kiwifruit pollen compared to soluble Pd(II)
2010
Speranza, Anna | Leopold, Kerstin | Maier, Marina | Taddei, Anna Rita | Scoccianti, Valeria
In the present study, endpoints including in vitro pollen performance (i.e., germination and tube growth) and lethality were used as assessments of nanotoxicity. Pollen was treated with 5–10 nm-sized Pd particles, similar to those released into the environment by catalytic car exhaust converters. Results showed Pd-nanoparticles altered kiwifruit pollen morphology and entered the grains more rapidly and to a greater extent than soluble Pd(II). At particulate Pd concentrations well below those of soluble Pd(II), pollen grains experienced rapid losses in endogenous calcium and pollen plasma membrane damage was induced. This resulted in severe inhibition and subsequent cessation of pollen tube emergence and elongation at particulate Pd concentrations as low as 0.4 mg L−1. Particulate Pd emissions related to automobile traffic have been increasing and are accumulating in the environment. This could seriously jeopardize in vivo pollen function, with impacts at an ecosystem level. Nanoparticulate Pd – which resembles emissions from automobile catalysts – affects pollen to a higher extent than soluble Pd.
显示更多 [+] 显示较少 [-]