细化搜索
结果 1-10 的 16
Decision support tool for soil sampling of heterogeneous pesticide (chlordecone) pollution 全文
2014
Clostre F. | Lesueur Jannoyer M. | Achard R. | Letourmy P. | Cabidoche Y.M. | Cattan P.
Decision support tool for soil sampling of heterogeneous pesticide (chlordecone) pollution 全文
2014
Clostre F. | Lesueur Jannoyer M. | Achard R. | Letourmy P. | Cabidoche Y.M. | Cattan P.
When field pollution is heterogeneous due to localized pesticide application, as is the case of chlordecone (CLD), the mean level of pollution is difficult to assess. Our objective was to design a decision support tool to optimize soil sampling. We analyzed the CLD heterogeneity of soil content at 0-30- and 30-60-cm depth. This was done within and between nine plots (0.4 to 1.8 ha) on andosol and ferralsol. We determined that 20 pooled subsamples per plot were a satisfactory compromise with respect to both cost and accuracy. Globally, CLD content was greater for andosols and the upper soil horizon (0-30 cm). Soil organic carbon cannot account for CLD intra-field variability. Cropping systems and tillage practices influence the CLD content and distribution; that is CLD pollution was higher under intensive banana cropping systems and, while upper soil horizon was more polluted than the lower one with shallow tillage (<40 cm), deeper tillage led to a homogenization and a dilution of the pollution in the soil profile. The decision tool we proposed compiles and organizes these results to better assess CLD soil pollution in terms of sampling depth, distance, and unit at field scale. It accounts for sampling objectives, farming practices (cropping system, tillage), type of soil, and topographical characteristics (slope) to design a relevant sampling plan. This decision support tool is also adaptable to other types of heterogeneous agricultural pollution at field level. (Résumé d'auteur)
显示更多 [+] 显示较少 [-]Decision support tool for soil sampling of heterogeneous pesticide (chlordecone) pollution 全文
2014
Clostre, Florence | Lesueur Jannoyer, Magalie | Achard, Raphaël | Letourmy, Philippe | Cabidoche, Yves-Marie | Cattan, Philippe | Fonctionnement agroécologique et performances des systèmes de cultures horticoles (UPR HORTSYS) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad) | Pôle de Recherche Agro-Environnementale de la Martinique ; Partenaires INRAE | Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad) | Agrosystèmes tropicaux (ASTRO) ; Institut National de la Recherche Agronomique (INRA) | Conseil Régional de la Martinique et Ministère des Outre-Mer (France)
The online version of this article (doi:10.1007/s11356-013-2095-x) contains supplementary material, which is available to authorized users. | International audience | When field pollution is heterogeneous due to localized pesticide application, as is the case of chlordecone (CLD), the mean level of pollution is difficult to assess. Our objective was to design a decision support tool to optimize soil sampling. We analyzed the CLD heterogeneity of soil content at 0-30- and 30-60-cm depth. This was done within and between nine plots (0.4 to 1.8 ha) on andosol and ferralsol. We determined that 20 pooled subsamples per plot were a satisfactory compromise with respect to both cost and accuracy. Globally, CLD content was greater for andosols and the upper soil horizon (0-30 cm). Soil organic carbon cannot account for CLD intra-field variability. Cropping systems and tillage practices influence the CLD content and distribution; that is CLD pollution was higher under intensive banana cropping systems and, while upper soil horizon was more polluted than the lower one with shallow tillage (< 40 cm), deeper tillage led to a homogenization and a dilution of the pollution in the soil profile. The decision tool we proposed compiles and organizes these results to better assess CLD soil pollution in terms of sampling depth, distance, and unit at field scale. It accounts for sampling objectives, farming practices (cropping system, tillage), type of soil, and topographical characteristics (slope) to design a relevant sampling plan. This decision support tool is also adaptable to other types of heterogeneous agricultural pollution at field level.
显示更多 [+] 显示较少 [-]Decision support tool for soil sampling of heterogeneous pesticide (chlordecone) pollution 全文
2014
Clostre, Florence | Lesueur Jannoyer, Magalie | Achard, Raphaël | Letourmy, Philippe | Cabidoche, Yves-Marie | Cattan, Philippe
When field pollution is heterogeneous due to localized pesticide application, as is the case of chlordecone (CLD), the mean level of pollution is difficult to assess. Our objective was to design a decision support tool to optimize soil sampling. We analyzed the CLD heterogeneity of soil content at 0–30- and 30–60-cm depth. This was done within and between nine plots (0.4 to 1.8 ha) on andosol and ferralsol. We determined that 20 pooled subsamples per plot were a satisfactory compromise with respect to both cost and accuracy. Globally, CLD content was greater for andosols and the upper soil horizon (0–30 cm). Soil organic carbon cannot account for CLD intra-field variability. Cropping systems and tillage practices influence the CLD content and distribution; that is CLD pollution was higher under intensive banana cropping systems and, while upper soil horizon was more polluted than the lower one with shallow tillage (<40 cm), deeper tillage led to a homogenization and a dilution of the pollution in the soil profile. The decision tool we proposed compiles and organizes these results to better assess CLD soil pollution in terms of sampling depth, distance, and unit at field scale. It accounts for sampling objectives, farming practices (cropping system, tillage), type of soil, and topographical characteristics (slope) to design a relevant sampling plan. This decision support tool is also adaptable to other types of heterogeneous agricultural pollution at field level.
显示更多 [+] 显示较少 [-]Impacts of land uses on mercury retention in long-time cultivated soils, Brazilian Amazon 全文
2013
Comte I. | Lucotte M. | Davidson R. | Reis de Carvalho C. | de Assis Oliveira F. | Rousseau G.X.
Impacts of land uses on mercury retention in long-time cultivated soils, Brazilian Amazon 全文
2013
Comte I. | Lucotte M. | Davidson R. | Reis de Carvalho C. | de Assis Oliveira F. | Rousseau G.X.
Many studies have shown the relationship between fire clearing and mercury contamination of aquatic ecosystems in the Brazilian Amazon. This study aimed at quantifying mercury content in long-time cultivated soils and at assessing the potential of a fire-free alternative clearing technique on mercury retention for long-time cultivated soils compared to traditional slash-and-burn. This case study included five land uses: one crop plot and one pasture plot cleared using slash-and-burn, one crop plot and one pasture plot cleared using chop-and-mulch, and one 40-year-old forest as a control. Low mercury concentrations were recorded in the surface horizon (24.83 to 49.48 ng g?1, 0–5 cm depth). The long-time cultivation (repeated burnings) of these soils triggered large mercury losses in the surface horizon, highlighted by high enrichment factors from surface to deeper horizons. The predominant effect of repeated burnings before the experimental implementation did not let us to distinguish a positive effect of the chop-and-mulch clearing method on soil mercury retention for crops and pastures. Moreover, some processes related to the presence of the mulch may favor mercury retention (Hg volatilization decrease, cationic sites increase), while others may contribute to mercury losses (cationic competition and dislocation, mobilization by the dissolved organic matter). (Résumé d'auteur)
显示更多 [+] 显示较少 [-]Impacts of Land Uses on Mercury Retention in Long-Time Cultivated Soils, Brazilian Amazon 全文
2013
Comte, Irina | Lucotte, Marc | Davidson, Robert | Reis de Carvalho, Claúdio José | de Assis Oliveira, Francisco | Rousseau, Guillaume X.
Many studies have shown the relationship between fire clearing and mercury contamination of aquatic ecosystems in the Brazilian Amazon. This study aimed at quantifying mercury content in long-time cultivated soils and at assessing the potential of a fire-free alternative clearing technique on mercury retention for long-time cultivated soils compared to traditional slash-and-burn. This case study included five land uses: one crop plot and one pasture plot cleared using slash-and-burn, one crop plot and one pasture plot cleared using chop-and-mulch, and one 40-year-old forest as a control. Low mercury concentrations were recorded in the surface horizon (24.83 to 49.48 ng g⁻¹, 0–5 cm depth). The long-time cultivation (repeated burnings) of these soils triggered large mercury losses in the surface horizon, highlighted by high enrichment factors from surface to deeper horizons. The predominant effect of repeated burnings before the experimental implementation did not let us to distinguish a positive effect of the chop-and-mulch clearing method on soil mercury retention for crops and pastures. Moreover, some processes related to the presence of the mulch may favor mercury retention (Hg volatilization decrease, cationic sites increase), while others may contribute to mercury losses (cationic competition and dislocation, mobilization by the dissolved organic matter).
显示更多 [+] 显示较少 [-]Integrated modeling of agricultural scenarios (IMAS) to support pesticide action plans: the case of the Coulonge drinking water catchment area (SW France) 全文
2017
Vernier F. | Leccia-Phelpin O. | Lescot J.M. | Minette S. | Miralles A. | Barberis D. | Scordia C. | Kuentz-Simonet V. | Tonneau J.P.
Integrated modeling of agricultural scenarios (IMAS) to support pesticide action plans: the case of the Coulonge drinking water catchment area (SW France) 全文
2017
Vernier F. | Leccia-Phelpin O. | Lescot J.M. | Minette S. | Miralles A. | Barberis D. | Scordia C. | Kuentz-Simonet V. | Tonneau J.P.
Non-point source pollution is a cause of major concern within the European Union. This is reflected in increasing public and political focus on a more sustainable use of pesticides, as well as a reduction in diffuse pollution. Climate change will likely to lead to an even more intensive use of pesticides in the future, affecting agriculture in many ways. At the same time, the Water Framework Directive (WFD) and associated EU policies called for a “good” ecological and chemical status to be achieved for water bodies by the end of 2015, currently delayed to 2021–2027 due to a lack of efficiency in policies and timescale of resilience for hydrosystems, especially groundwater systems. Water managers need appropriate and user-friendly tools to design agro-environmental policies. These tools should help them to evaluate the potential impacts of mitigation measures on water resources, more clearly define protected areas, and more efficiently distribute financial incentives to farmers who agree to implement alternative practices. At present, a number of reports point out that water managers do not use appropriate information from monitoring or models to make decisions and set environmental action plans. In this paper, we propose an integrated and collaborative approach to analyzing changes in land use, farming systems, and practices and to assess their effects on agricultural pressure and pesticide transfers to waters. The integrated modeling of agricultural scenario (IMAS) framework draws on a range of data and expert knowledge available within areas where a pesticide action plan can be defined to restore the water quality, French “Grenelle law” catchment areas, French Water Development and Management Plan areas, etc. A so-called “reference scenario” represents the actual soil occupation and pesticide-spraying practices used in both conventional and organic farming. A number of alternative scenarios are then defined in cooperation with stakeholders, including socio-economi
显示更多 [+] 显示较少 [-]Integrated modeling of agricultural scenarios (IMAS) to support pesticide action plans: the case of the Coulonge drinking water catchment area (SW France) 全文
2017
Vernier, Françoise | Leccia-Phelpin, Odile | Lescot, Jean-Marie | Minette, Sébastien | Miralles, André | Barberis, Delphine | Scordia, Charlotte | Kuentz-Simonet, Vanessa | Tonneau, Jean-Philippe
Non-point source pollution is a cause of major concern within the European Union. This is reflected in increasing public and political focus on a more sustainable use of pesticides, as well as a reduction in diffuse pollution. Climate change will likely to lead to an even more intensive use of pesticides in the future, affecting agriculture in many ways. At the same time, the Water Framework Directive (WFD) and associated EU policies called for a “good” ecological and chemical status to be achieved for water bodies by the end of 2015, currently delayed to 2021–2027 due to a lack of efficiency in policies and timescale of resilience for hydrosystems, especially groundwater systems. Water managers need appropriate and user-friendly tools to design agro-environmental policies. These tools should help them to evaluate the potential impacts of mitigation measures on water resources, more clearly define protected areas, and more efficiently distribute financial incentives to farmers who agree to implement alternative practices. At present, a number of reports point out that water managers do not use appropriate information from monitoring or models to make decisions and set environmental action plans. In this paper, we propose an integrated and collaborative approach to analyzing changes in land use, farming systems, and practices and to assess their effects on agricultural pressure and pesticide transfers to waters. The integrated modeling of agricultural scenario (IMAS) framework draws on a range of data and expert knowledge available within areas where a pesticide action plan can be defined to restore the water quality, French “Grenelle law” catchment areas, French Water Development and Management Plan areas, etc. A so-called “reference scenario” represents the actual soil occupation and pesticide-spraying practices used in both conventional and organic farming. A number of alternative scenarios are then defined in cooperation with stakeholders, including socio-economic conditions for developing alternative agricultural systems or targeting mitigation measures. Our integrated assessment of these scenarios combines the calculation of spatialized environmental indicators with integrated bio-economic modeling. The latter is achieved by a combined use of Soil and Water Assessment Tool (SWAT) modeling with our own purpose-built land use generator module (Generator of Land Use version 2 (GenLU2)) and an economic model developed using General Algebraic Modeling System (GAMS) for cost-effectiveness assessment. This integrated approach is applied to two embedded catchment areas (total area of 360,000 ha) within the Charente river basin (SW France). Our results show that it is possible to differentiate scenarios based on their effectiveness, represented by either evolution of pressure (agro-environmental indicators) or transport into waters (pesticide concentrations). By analyzing the implementation costs borne by farmers, it is possible to identify the most cost-effective scenarios at sub-basin and other aggregated levels (WFD hydrological entities, sensitive areas). Relevant results and indicators are fed into a specifically designed database. Data warehousing is used to provide analyses and outputs at all thematic, temporal, or spatial aggregated levels, defined by the stakeholders (type of crops, herbicides, WFD areas, years), using Spatial On-Line Analytical Processing (SOLAP) tools. The aim of this approach is to allow public policy makers to make more informed and reasoned decisions when managing sensitive areas and/or implementing mitigation measures.
显示更多 [+] 显示较少 [-]Integrated modeling of agricultural scenarios (IMAS) to support pesticide action plans: the case of the Coulonge drinking water catchment area (SW France) 全文
2017
Vernier, Françoise | Leccia-Phelpin, Odile | Lescot, Jean-Marie | Minette, Sebastien | Miralles, A. | Barberis, Delphine | Scordia, C. | Kuentz Simonet, V. | Tonneau, J.P.
Non-point source pollution is a cause of major concern within the European Union. This is reflected in increasing public and political focus on a more sustainable use of pesticides, as well as a reduction in diffuse pollution. Climate change will likely to lead to an even more intensive use of pesticides in the future, affecting agriculture in many ways. At the same time, the Water Framework Directive (WFD) and associated EU policies called for a “good” ecological and chemical status to be achieved for water bodies by the end of 2015, currently delayed to 2021–2027 due to a lack of efficiency in policies and timescale of resilience for hydrosystems, especially groundwater systems. Water managers need appropriate and user-friendly tools to design agro-environmental policies. These tools should help them to evaluate the potential impacts of mitigation measures on water resources, more clearly define protected areas, and more efficiently distribute financial incentives to farmers who agree to implement alternative practices. At present, a number of reports point out that water managers do not use appropriate information from monitoring or models to make decisions and set environmental action plans. In this paper, we propose an integrated and collaborative approach to analyzing changes in land use, farming systems, and practices and to assess their effects on agricultural pressure and pesticide transfers to waters. The integrated modeling of agricultural scenario (IMAS) framework draws on a range of data and expert knowledge available within areas where a pesticide action plan can be defined to restore the water quality, French “Grenelle law” catchment areas, French Water Development and Management Plan areas, etc. A so-called “reference scenario” represents the actual soil occupation and pesticide-spraying practices used in both conventional and organic farming. A number of alternative scenarios are then defined in cooperation with stakeholders, including socio-economic conditions for developing alternative agricultural systems or targeting mitigation measures. Our integrated assessment of these scenarios combines the calculation of spatialized environmental indicators with integrated bio-economic modeling. The latter is achieved by a combined use of Soil and Water Assessment Tool (SWAT) modeling with our own purpose-built land use generator module (Generator of Land Use version 2 (GenLU2)) and an economic model developed using General Algebraic Modeling System (GAMS) for cost-effectiveness assessment. This integrated approach is applied to two embedded catchment areas (total area of 360,000 ha) within the Charente river basin (SW France). Our results show that it is possible to differentiate scenarios based on their effectiveness, represented by either evolution of pressure (agro-environmental indicators) or transport into waters (pesticide concentrations). By analyzing the implementation costs borne by farmers, it is possible to identify the most cost-effective scenarios at sub-basin and other aggregated levels (WFD hydrological entities, sensitive areas). Relevant results and indicators are fed into a specifically designed database. Data warehousing is used to provide analyses and outputs at all thematic, temporal, or spatial aggregated levels, defined by the stakeholders (type of crops, herbicides, WFD areas, years), using Spatial On-Line Analytical Processing (SOLAP) tools. The aim of this approach is to allow public policy makers to make more informed and reasoned decisions when managing sensitive areas and/or implementing mitigation measures.
显示更多 [+] 显示较少 [-]Integrated modeling of agricultural scenarios (IMAS) to support pesticide action plans: the case of the Coulonge drinking water catchment area (SW France) | Modélisation intégrée de scénarios agricoles (IMAS) pour l'aide à la décision publique : le cas de l'aire d'alimentation de captage de Coulonge St Hippolyte (SO France) 全文
2017
Vernier, Françoise | Leccia-Phelpin, Odile | Lescot, Jean-Marie | Minette, Sebastien | Miralles, A. | Barberis, Delphine | Scordia, C. | Kuentz Simonet, V. | Tonneau, J.P. | Environnement, territoires et infrastructures (UR ETBX) ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) | CHAMBRE REGIONALE D'AGRICULTURE MIGNALOUX BEAUVOIR FRA ; Partenaires IRSTEA ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) | Territoires, Environnement, Télédétection et Information Spatiale (UMR TETIS) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-AgroParisTech-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Centre National de la Recherche Scientifique (CNRS)
[Departement_IRSTEA]Territoires [TR1_IRSTEA]DTAM [Axe_IRSTEA]DTAM-QT2-ADAPTATION [TR2_IRSTEA]SYNERGIE | International audience | Non-point source pollution is a cause of major concern within the European Union. This is reflected in increasing public and political focus on a more sustainable use of pesticides, as well as a reduction in diffuse pollution. Climate change will likely to lead to an even more intensive use of pesticides in the future, affecting agriculture in many ways. At the same time, the Water Framework Directive (WFD) and associated EU policies called for a “good” ecological and chemical status to be achieved for water bodies by the end of 2015, currently delayed to 2021–2027 due to a lack of efficiency in policies and timescale of resilience for hydrosystems, especially groundwater systems. Water managers need appropriate and user-friendly tools to design agro-environmental policies. These tools should help them to evaluate the potential impacts of mitigation measures on water resources, more clearly define protected areas, and more efficiently distribute financial incentives to farmers who agree to implement alternative practices. At present, a number of reports point out that water managers do not use appropriate information from monitoring or models to make decisions and set environmental action plans. In this paper, we propose an integrated and collaborative approach to analyzing changes in land use, farming systems, and practices and to assess their effects on agricultural pressure and pesticide transfers to waters. The integrated modeling of agricultural scenario (IMAS) framework draws on a range of data and expert knowledge available within areas where a pesticide action plan can be defined to restore the water quality, French “Grenelle law” catchment areas, French Water Development and Management Plan areas, etc. A so-called “reference scenario” represents the actual soil occupation and pesticide-spraying practices used in both conventional and organic farming. A number of alternative scenarios are then defined in cooperation with stakeholders, including socio-economic conditions for developing alternative agricultural systems or targeting mitigation measures. Our integrated assessment of these scenarios combines the calculation of spatialized environmental indicators with integrated bio-economic modeling. The latter is achieved by a combined use of Soil and Water Assessment Tool (SWAT) modeling with our own purpose-built land use generator module (Generator of Land Use version 2 (GenLU2)) and an economic model developed using General Algebraic Modeling System (GAMS) for cost-effectiveness assessment. This integrated approach is applied to two embedded catchment areas (total area of 360,000 ha) within the Charente river basin (SW France). Our results show that it is possible to differentiate scenarios based on their effectiveness, represented by either evolution of pressure (agro-environmental indicators) or transport into waters (pesticide concentrations). By analyzing the implementation costs borne by farmers, it is possible to identify the most cost-effective scenarios at sub-basin and other aggregated levels (WFD hydrological entities, sensitive areas). Relevant results and indicators are fed into a specifically designed database. Data warehousing is used to provide analyses and outputs at all thematic, temporal, or spatial aggregated levels, defined by the stakeholders (type of crops, herbicides, WFD areas, years), using Spatial On-Line Analytical Processing (SOLAP) tools. The aim of this approach is to allow public policy makers to make more informed and reasoned decisions when managing sensitive areas and/or implementing mitigation measures.
显示更多 [+] 显示较少 [-]Heterogeneity of soil pollution 全文
2016
Cattan P. | Woignier T. | Clostre F. | Lesueur Jannoyer M.
The global nitrogen cycle: changes and consequences
1998
Galloway, J.N. (Department of Environmental Sciences, University of Virginia, Charlottesville, VA 22903 (USA))
Organochlorine pesticide residues in human milk in Punjab, India
1994
Kalra, R.L. | Balwinder Singh | Battu, R.S. (Department of Entomology, Punjab Agricultural University, Ludhiana, Punjab (India))
Crisis management of chronic pollution: contaminated soil and human health 全文
2016
Lesueur Jannoyer M. (ed.) | Cattan P. (ed.) | Woignier T. (ed.) | Clostre F. (ed.)
Crisis Management of Chronic Pollution: Contaminated Soil and Human Health deals with a long term pollution problem, generated by the former use of organochlorine pesticides. Through a case study of the chlordecone pollution in the French West Indies, the authors illustrate a global and systemic mobilization of research institutions and public services. This "management model", together with its major results, the approach and lessons to be learned, could be useful to other situations. This book gathers all the works that have been carried out over the last ten years or more and links them to decision makers' actions and stakeholders' expectations. This reference fills a gap in the literature on chronic pollution. (Résumé d'auteur)
显示更多 [+] 显示较少 [-]The use of sludge from biogas plant for mushroom cultivation
1994
Levanon, D. (Institute of Soils and Water, Bet Dagan (Israel)) | Danai, O.
Toward a consistent accounting of water as a resource and a vector of pollution in the LCA of agricultural products: Methodological development and application to a perennial cropping system 全文
2015
Payen S.
Identifying the environmental hot spots of agriculture is crucial in a context where humanity has to produce more food and pollute less. Life Cycle Assessment (LCA) is a powerful tool to evaluate the environmental impacts of agricultural systems, but is still fraught with shortcomings, notably for the evaluation of impacts of freshwater use and of salinisation of water and soil. The core complexity lies in the double status of water and soil resources in LCA which are both a resource and a compartment. The three questions answered by the thesis were: How to better assess the impacts associated with water and salts fluxes? What model should be developed for a relevant inventory of field water and salts fluxes? Is the developed model operational for an LCA study on a perennial crop? The first question was answered through a literature review on salinisation impacts in LCA. It revealed the main environmental mechanisms of salinisation, the factors involved, and discussed the soil and water status, notably through a consistent definition of the technosphere and ecosphere boundary. To answer the second question, a critical analysis of water inventory and agri-food LCA databases showed their inadequacy for the LCA-based ecodesign of cropping systems: they provide estimates of theoretical water consumed, rely on data and methods presenting limitations, and do not support the calculation of both consumptive and degradative water use impacts. For the LCA-based ecodesign of cropping systems, the inventory of water flows should be based on a model simulating evapotranspiration, deep percolation and runoff accounting for crop specificities, pedo-climatic conditions and agricultural managements. For herbaceous crops, the FAO Aquacrop model constitutes a relevant and operational model, but no dedicated model is available to-date for perennials. To fill this gap, a tailored and simple model, so called E.T., was elaborated for the inventory of field water and salt flows for annual
显示更多 [+] 显示较少 [-]Diagnosis and management of field pollution in the case of an organochlorine pesticide, the chlordecone 全文
2014
Woignier T. | Clostre F. | Cattan P. | Levillain J. | Cabidoche Y.M. | Lesueur Jannoyer M.
Diagnosis and management of field pollution in the case of an organochlorine pesticide, the chlordecone 全文
2014
Woignier T. | Clostre F. | Cattan P. | Levillain J. | Cabidoche Y.M. | Lesueur Jannoyer M.
Diagnosis and Management of Field Pollution in the Case of an Organochlorine Pesticide, the Chlordecone 全文
2014
Woignier, Thierry | Clostre, Florence | Cattan, Philippe | Levillain, Joseph | Cabidoche, Yves-Marie | Lesueur Jannoyer, Magalie