细化搜索
结果 1-10 的 101
From behaviour to complex communities: Resilience to anthropogenic noise in a fish-induced trophic cascade 全文
2023
Rojas, Emilie | Gouret, Mélanie | Agostini, Simon | Fiorini, Sarah | Fonseca, Paulo | Lacroix, Gérard | Médoc, Vincent | CEREEP-Ecotron Ile de France (UMS 3194) ; Département de Biologie - ENS-PSL (IBENS) ; École normale supérieure - Paris (ENS-PSL) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS) | Centre for Ecology - Evolution and Environmental Changes (cE3c) ; Universidade de Lisboa = University of Lisbon = Université de Lisbonne (ULISBOA) | Institut d'écologie et des sciences de l'environnement de Paris (iEES Paris) ; Institut de Recherche pour le Développement (IRD)-Sorbonne Université (SU)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Université Jean Monnet - Saint-Étienne (UJM)
International audience | Sound emissions from human activities represent a pervasive environmental stressor. Individual responses in terms of behaviour, physiology or anatomy are well documented but whether they propagate through nested ecological interactions to alter complex communities needs to be better understood. This is even more relevant for freshwater ecosystems that harbour a disproportionate fraction of biodiversity but receive less attention than marine and terrestrial systems. We conducted a mesocosm investigation to study the effect of chronic exposure to motorboat noise on the dynamics of a freshwater community including phytoplankton, zooplankton, and roach as a planktivorous fish. In addition, we performed a microcosm investigation to test whether roach’s feeding behaviour was influenced by the noise condition they experienced in the mesocosms. Indeed, compared to other freshwater fish, the response of roach to motorboat noise apparently does not weaken with repeated exposure, suggesting the absence of habituation. As expected under the trophic cascade hypothesis, predation by roach induced structural changes in the planktonic communities with a decrease in the main grazing zooplankton that slightly benefited green algae. Surprisingly, although the microcosm investigation revealed persistent alterations in the feeding behaviour of the roach exposed to chronic noise, the dynamics of the roach-dominated planktonic communities did not differ between the noisy and noiseless mesocosms. It might be that roach’s individual response to noise was not strong enough to cascade or that the biological cues coming from the conspecifics and the many planktonic organisms have diverted each fish’s attention from noise. Our work suggests that the top-down structuring influence of roach on planktonic communities might be resilient to noise and highlights how extrapolating impacts from individual responses to complex communities can be tricky.
显示更多 [+] 显示较少 [-]A catastrophic change in a european protected wetland: From harmful phytoplankton blooms to fish and bird kill 全文
2022
Demertzioglou, Maria | Genitsaris, Savvas | Mazaris, Antonios D. | Kyparissis, Aris | Voutsa, Dimitra | Kozari, Argyri | Kormas, Konstantinos Ar | Stefanidou, Natassa | Katsiapi, Matina | Michaloudi, Evangelia | Moustaka-Gouni, Maria
Understanding the processes that underlay an ecological disaster represents a major scientific challenge. Here, we investigated phytoplankton and zooplankton community changes before and during a fauna mass kill in a European protected wetland. Evidence on gradual development and collapse of harmful phytoplankton blooms, allowed us to delineate the biotic and abiotic interactions that led to this ecological disaster. Before the mass fauna kill, mixed blooms of known harmful cyanobacteria and the killer alga Prymnesium parvum altered biomass flow and minimized zooplankton resource use efficiency. These blooms collapsed under high nutrient concentrations and inhibitory ammonia levels, with low phytoplankton biomass leading to a dramatic drop in photosynthetic oxygenation and a shift to a heterotrophic ecosystem phase. Along with the phytoplankton collapse, extremely high numbers of red planktonic crustaceans-Daphnia magna, visible through satellite images, indicated low oxygen conditions as well as a decrease or absence of fish predation pressure. Our findings provide clear evidence that the mass episode of fish and birds kill resulted through severe changes in phytoplankton and zooplankton dynamics, and the alternation on key abiotic conditions. Our study highlights that plankton-related ecosystem functions mirror the accumulated heavy anthropogenic impacts on freshwaters and could reflect a failure in conservation and restoration measures.
显示更多 [+] 显示较少 [-]Effects of reduced pH on an estuarine penaeid shrimp (Metapenaeus macleayi) 全文
2021
Acid sulfate soils are a major problem in modified coastal floodplains and are thought to have substantial impacts on estuarine species. In New South Wales, Australia, acid sulfate soils occur in every estuary and are thought to impact important fisheries species, such as Eastern School Prawn (Metapenaeus macleayi). These fisheries have experienced declining productivity over the last ten years and increasing occurrence of catchment-derived stressors in estuaries contribute to this problem. We evaluated the effect of pH 4–7.5 on School Prawn survival at two salinities (27 and 14.5), pH 5, 6 and 7.5 on the predation escape response (PER) speed at two salinities (27 and 14.5), and pH 4 and 7.5 on respiration rates. While mortality appeared to be greater in the high salinity treatment, there was no significant relationship between proportional survival and pH for either salinity treatment. Respiration was significantly slower under acidic conditions and the average PER was almost twice as fast at pH 7.5 compared to pH 5 (p < 0.05), indicating prawns may fall prey to predation more easily in acidic conditions. These findings confirm the hypothesised impacts of acidic water on penaeid prawns. Given that the conditions simulated in these experiments reflect those encountered in estuaries, acidic runoff may be contributing to bottlenecks for estuarine species and impacting fisheries productivity.
显示更多 [+] 显示较少 [-]Phenotypic responses to oil pollution in a poeciliid fish 全文
2021
Santi, Francesco | Vella, Emily | Jeffress, Katherine | Deacon, Amy | Riesch, Rüdiger
Pollution damages ecosystems around the globe and some forms of pollution, like oil pollution, can be either man-made or derived from natural sources. Despite the pervasiveness of oil pollution, certain organisms are able to colonise polluted or toxic environments, yet we only have a limited understanding of how they are affected by it. Here, we analysed phenotypic responses to oil pollution in guppies (Poecilia reticulata) living in oil-polluted habitats across southern Trinidad. We analysed body-shape and life-history traits for 352 individuals from 11 independent populations, six living in oil-polluted environments (including the naturally oil-polluted Pitch Lake), and five stemming from non-polluted habitats. Based on theory of, and previous studies on, responses to environmental stressors, we predicted guppies from oil-polluted waters to have larger heads and shallower bodies, to be smaller, to invest more into reproduction, and to produce more but smaller offspring compared to guppies from non-polluted habitats. Contrary to most of our predictions, we uncovered strong population-specific variation regardless of the presence of oil pollution. Moreover, guppies from oil-polluted habitats were characterised by increased body size; rounder, deeper bodies with increased head size; and increased offspring size, when compared to their counterparts from non-polluted sites. This suggests that guppies in oil-polluted environments are not only subject to the direct negative effects of oil pollution, but might gain some (indirect) benefits from other concomitant environmental factors, such as reduced predation and reduced parasite load. Our results extend our knowledge of organismal responses to oil pollution and highlight the importance of anthropogenic pollution as a source of environmental variation. They also emphasise the understudied ecological heterogeneity of extreme environments.
显示更多 [+] 显示较少 [-]Artificial light reduces foraging opportunities in wild least horseshoe bats 全文
2021
Luo, Bo | Xu, Rong | Li, Yunchun | Zhou, Wenyu | Wang, Weiwei | Gao, Huimin | Wang, Zhen | Deng, Yingchun | Liu, Ying | Feng, Jiang
Artificial light at night has been proposed as a global threat to biodiversity. Insectivorous bats are strictly nocturnal animals that are vulnerable to disruption from artificial light. Given that many light-sensitive bats tend to avoid night light during roost departure, it is often assumed that nighttime light pollution reduces their foraging opportunities, albeit empirical evidence in support of this hypothesis remains elusive. Here, we used least horseshoe bats, Rhinolophus pusillus, to assess whether white artificial light is detrimental for the opportunities of foraging. We manipulated the levels of ambient illumination and perceived predation risk inside the bat roost. We monitored bats' emergence activity using high-speed video and audio recording systems. DNA-based faecal dietary analysis and insect survey were applied to determine activity time of prey in foraging areas. Following experimentally manipulation of white light-emitting diode (LED) lighting 0–15 min after sunset, bat pass, flight duration, and echolocation pulse emission decreased. The mean emergence time of bats flying out was delayed by 14 min under lit treatment compared with the dark control. Only 10% of bats left for foraging during 40 min of light exposure. Aversive effects of LED light on bat emergence were robust regardless of the presence of a potential predator. Insect prey reached a peak of abundance between 30 and 60 min after sunset. These results demonstrate that white artificial light hinders evening emergence behavior in least horseshoe bats, leading to a mismatch between foraging onset and peak food availability. Our findings highlight that light pollution overrides foraging onset, suggesting the importance of improving artificial lighting scheme near the roosts of light-sensitive bats.
显示更多 [+] 显示较少 [-]Microcystis aeruginosa affects the inducible anti-predator responses of Ceriodaphnia cornuta 全文
2020
Gu, Lei | Qin, Shanshan | Zhu, Shuangshuang | Lu, Na | Sun, Yunfei | Zhang, Lu | Huang, Yuan | Lyu, Kai | Chen, Yafen | Yang, Zhou
Cyanobacterial blooms are an increasing problem in a more eutrophic world. It is still a challenge to fully understand the influence of cyanobacteria on the interactions between predator and prey at higher trophic levels. The present study was mainly undertaken to understand the inducible anti-predator responses of cladocerans while using cyanobacteria as part of food. Specifically speaking, we focused on the anti-predator strategies of Ceriodaphnia cornuta in response to different predators (fish and Chaoborus larvae) under food with different proportions of Microcystis aeruginosa. The morphological (i.e., body size and the induction of horns) and life history traits (e.g., time to first reproduction, offspring number, and survival time) responses were measured under different proportions of M. aeruginosa (i.e., 0%, 20%, 40%, 60%, 80%, and 100%). Our results showed that both the life history and the inducible anti-predator responses of C. cornuta were significantly affected by different concentrations of M. aeruginosa. Specifically, lower concentrations of Microcystis (20%–60%) can significantly promote the horns induction under Chaoborus predation risks, and higher Microcystis concentrations (60%–100%) tend to enhance reproduction in response to fish predation risks, such as larger body size, decreased time to first reproduction, and increased total offspring number. Additionally, an increasing concentration of M. aeruginosa decreased the ability of C. cornuta to reverse horns when predation risks removed. Our findings indicated that cyanobacteria affecting life history traits and the subsequent indirect effects on anti-predator responses in cladocerans could impact the interactions between predator and prey at higher trophic levels and may consequently contribute to shaping the structure of the community in a cyanobacteria bloom area.
显示更多 [+] 显示较少 [-]Contamination may induce behavioural plasticity in the habitat selection by shrimps: A cost-benefits balance involving contamination, shelter and predation 全文
2020
Araújo, Cristiano V.M. | Pereira, Karyna C. | Sparaventi, Erica | González-Ortegón, Enrique | Blasco, Julián
Contamination may induce behavioural plasticity in the habitat selection by shrimps: A cost-benefits balance involving contamination, shelter and predation 全文
2020
Araújo, Cristiano V.M. | Pereira, Karyna C. | Sparaventi, Erica | González-Ortegón, Enrique | Blasco, Julián
When shrimps select a habitat, the presence of elements like predators, shelter and contamination might determine if an area is preferred or avoided. We hypothesised that when shrimps are exposed to a situation in which they have to select whether to avoid contamination, seek shelter or protect themselves against predators, they will avoid the situation that supposes a higher cost for their survival (cost-benefits balance). The current study aimed to assess the plasticity of the selection behaviour of the freshwater shrimp Atyaephyra desmarestii between moving to a clean and unprotected area (no shelter and with a risk of predation), thus avoiding exposure to contamination, or moving to a contaminated and protected area (with shelters), thereby avoiding potential predators. Shrimps were experimentally exposed in a free-choice system simulating a heterogeneous environment with a contaminant (copper), shelter and a predator signal (kairomones of Salmo trutta). The shrimps avoided the copper by moving towards a less contaminated area, both in the absence or presence of shelter. When confronted with a choice between a cleaner zone with no shelter and a contaminated zone with shelter, the shrimps preferred being in the cleanest area. However, when the uncontaminated area contained a predator signal, the shrimps balanced the risk of predation and exposure to contamination by selecting a moderately contaminated area relatively further away from the predator signals. In summary, contamination might favour a plasticity of the habitat selection behaviour of shrimps, modifying the cost-benefits balance of such a selection.
显示更多 [+] 显示较少 [-]Contamination may induce behavioural plasticity in the habitat selection by shrimps: A cost-benefits balance involving contamination, shelter and predation 全文
2020
Araújo, Cristiano V. M. | Pereira, Karyna C. | Sparaventi, Erica | González-Ortegón, Enrique | Blasco, Julián | Ministerio de Ciencia, Innovación y Universidades (España) | Consejo Superior de Investigaciones Científicas (España) | European Commission | Agencia Estatal de Investigación (España)
When shrimps select a habitat, the presence of elements like predators, shelter and contamination might determine if an area is preferred or avoided. We hypothesised that when shrimps are exposed to a situation in which they have to select whether to avoid contamination, seek shelter or protect themselves against predators, they will avoid the situation that supposes a higher cost for their survival (cost-benefits balance). The current study aimed to assess the plasticity of the selection behaviour of the freshwater shrimp Atyaephyra desmarestii between moving to a clean and unprotected area (no shelter and with a risk of predation), thus avoiding exposure to contamination, or moving to a contaminated and protected area (with shelters), thereby avoiding potential predators. Shrimps were experimentally exposed in a free-choice system simulating a heterogeneous environment with a contaminant (copper), shelter and a predator signal (kairomones of Salmo trutta). The shrimps avoided the copper by moving towards a less contaminated area, both in the absence or presence of shelter. When confronted with a choice between a cleaner zone with no shelter and a contaminated zone with shelter, the shrimps preferred being in the cleanest area. However, when the uncontaminated area contained a predator signal, the shrimps balanced the risk of predation and exposure to contamination by selecting a moderately contaminated area relatively further away from the predator signals. In summary, contamination might favour a plasticity of the habitat selection behaviour of shrimps, modifying the cost-benefits balance of such a selection. | C.V.M. Araújo received the Ramón y Cajal contract (RYC-2017-22324) from Spanish Ministry of Science and Innovation. K.C. Pereira received a doctoral fellowship (2014-0693/001-EMJD) from the Erasmus Mundus Programme (PhD in Marine and Coastal Management). The authors are grateful to D. Roque and A. Moreno (technical help in the fieldwork), M.C. Agullo (laboratory assistance), María del Valle Peláez from the fishfarm Piscifactoría Andaluzas - Genazar (help with the trout culture) and J. Nesbit (assistance with the revision of the English text). This study was funded by the Spanish Ministry of Science and Innovation (Explora Project: #CGL2017-92160-EXP and i-COOP2019 program from CSIC: COOPB20444). | Peer reviewed
显示更多 [+] 显示较少 [-]Mollusk shell alterations resulting from coastal contamination and other environmental factors 全文
2020
Harayashiki, Cyntia Ayumi Yokota | Márquez, Federico | Cariou, Elsa | Castro, Ítalo Braga
Mollusk shell alterations resulting from coastal contamination and other environmental factors 全文
2020
Harayashiki, Cyntia Ayumi Yokota | Márquez, Federico | Cariou, Elsa | Castro, Ítalo Braga
Effects of contamination on aquatic organisms have been investigated and employed as biomarkers in environmental quality assessment for years. A commonly referenced aquatic organism, mollusks represent a group of major interest in toxicological studies. Both gastropods and bivalves have external mineral shells that protects their soft tissue from predation and desiccation. These structures are composed of an organic matrix and an inorganic matrix, both of which are affected by environmental changes, including exposure to hazardous chemicals. This literature review evaluates studies that propose mollusk shell alterations as biomarkers of aquatic system quality. The studies included herein show that changes to natural variables such as salinity, temperature, food availability, hydrodynamics, desiccation, predatory pressure, and substrate type may influence the form, structure, and composition of mollusk shells. However, in the spatial and temporal studies performed in coastal waters around the world, shells of organisms sampled from multi-impacted areas were found to differ in the form and composition of both organic and inorganic matrices relative to shells from less contaminated areas. Though these findings are useful, the toxicological studies were often performed in the field and were not able to attribute shell alterations to a specific molecule. It is known that the organic matrix of shells regulates the biomineralization process; proteomic analyses of shells may therefore elucidate how different contaminants affect shell biomineralization. Further research using approaches that allow a clearer distinction between shell alterations caused by natural variations and those caused by anthropogenic influence, as well as studies to identify which molecule is responsible for such alterations or to determine the ecological implications of shell alterations, are needed before any responses can be applied universally.
显示更多 [+] 显示较少 [-]Mollusk shell alterations resulting from coastal contamination and other environmental factors 全文
2020
Yokota Harayashiki, Cyntia Ayumi | Marquez, Federico | Cariou, Elsa | Castro, Ítalo Braga
Effects of contamination on aquatic organisms have been investigated and employed as biomarkers in environmental quality assessment for years. A commonly referenced aquatic organism, mollusks represent a group of major interest in toxicological studies. Both gastropods and bivalves have external mineral shells that protects their soft tissue from predation and desiccation. These structures are composed of an organic matrix and an inorganic matrix, both of which are affected by environmental changes, including exposure to hazardous chemicals. This literature review evaluates studies that propose mollusk shell alterations as biomarkers of aquatic system quality. The studies included herein show that changes to natural variables such as salinity, temperature, food availability, hydrodynamics, desiccation, predatory pressure, and substrate type may influence the form, structure, and composition of mollusk shells. However, in the spatial and temporal studies performed in coastal waters around the world, shells of organisms sampled from multi-impacted areas were found to differ in the form and composition of both organic and inorganic matrices relative to shells from less contaminated areas. Though these findings are useful, the toxicological studies were often performed in the field and were not able to attribute shell alterations to a specific molecule. It is known that the organic matrix of shells regulates the biomineralization process; proteomic analyses of shells may therefore elucidate how different contaminants affect shell biomineralization. Further research using approaches that allow a clearer distinction between shell alterations caused by natural variations and those caused by anthropogenic influence, as well as studies to identify which molecule is responsible for such alterations or to determine the ecological implications of shell alterations, are needed before any responses can be applied universally. | Fil: Yokota Harayashiki, Cyntia Ayumi. Universidade Federal de Sao Paulo.; Brasil | Fil: Marquez, Federico. Universidad Nacional de la Patagonia "San Juan Bosco"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Biología de Organismos Marinos; Argentina | Fil: Cariou, Elsa. Universite de Nantes; Francia | Fil: Castro, Ítalo Braga. Universidade Federal de Sao Paulo.; Brasil
显示更多 [+] 显示较少 [-]Microplastic ingestion in fish larvae in the western English Channel 全文
2017
Steer, Madeleine | Cole, Matthew | Thompson, Richard C. | Lindeque, Penelope K.
Microplastics have been documented in marine environments worldwide, where they pose a potential risk to biota. Environmental interactions between microplastics and lower trophic organisms are poorly understood. Coastal shelf seas are rich in productivity but also experience high levels of microplastic pollution. In these habitats, fish have an important ecological and economic role. In their early life stages, planktonic fish larvae are vulnerable to pollution, environmental stress and predation. Here we assess the occurrence of microplastic ingestion in wild fish larvae. Fish larvae and water samples were taken across three sites (10, 19 and 35 km from shore) in the western English Channel from April to June 2016. We identified 2.9% of fish larvae (n = 347) had ingested microplastics, of which 66% were blue fibres; ingested microfibers closely resembled those identified within water samples. With distance from the coast, larval fish density increased significantly (P < 0.05), while waterborne microplastic concentrations (P < 0.01) and incidence of ingestion decreased. This study provides baseline ecological data illustrating the correlation between waterborne microplastics and the incidence of ingestion in fish larvae.
显示更多 [+] 显示较少 [-]Anthropogenic noise disrupts use of vocal information about predation risk 全文
2016
Kern, Julie M. | Radford, Andrew N.
Anthropogenic noise is rapidly becoming a universal environmental feature. While the impacts of such additional noise on avian sexual signals are well documented, our understanding of its effect in other terrestrial taxa, on other vocalisations, and on receivers is more limited. Little is known, for example, about the influence of anthropogenic noise on responses to vocalisations relating to predation risk, despite the potential fitness consequences. We use playback experiments to investigate the impact of traffic noise on the responses of foraging dwarf mongooses (Helogale parvula) to surveillance calls produced by sentinels, individuals scanning for danger from a raised position whose presence usually results in reduced vigilance by foragers. Foragers exhibited a lessened response to surveillance calls in traffic-noise compared to ambient-sound playback, increasing personal vigilance. A second playback experiment, using noise playbacks without surveillance calls, suggests that the increased vigilance could arise in part from the direct influence of additional noise as there was an increase in response to traffic-noise playback alone. Acoustic masking could also play a role. Foragers maintained the ability to distinguish between sentinels of different dominance class, increasing personal vigilance when presented with subordinate surveillance calls compared to calls of a dominant groupmate in both noise treatments, suggesting complete masking was not occurring. However, an acoustic-transmission experiment showed that while surveillance calls were potentially audible during approaching traffic noise, they were probably inaudible during peak traffic intensity noise. While recent work has demonstrated detrimental effects of anthropogenic noise on defensive responses to actual predatory attacks, which are relatively rare, our results provide evidence of a potentially more widespread influence since animals should constantly assess background risk to optimise the foraging–vigilance trade-off.
显示更多 [+] 显示较少 [-]