细化搜索
结果 1-10 的 227
Multigenerational inspections of environmental thermal perturbations promote metabolic trade-offs in developmental stages of tropical fish
2022
Wang, Min-Chen | Furukawa, Fumiya | Wang, Jingwei | Peng, Hui-Wen | Lin, Ching-Chun | Lin, Tzu-Hao | Tseng, Yung-Che
Global warming both reduces global temperature variance and increases the frequency of extreme weather events. In response to these ambient perturbations, animals may be subject to trans- or intra-generational phenotype modifications that help to maintain homeostasis and fitness. Here, we show how temperature-associated transgenerational plasticity in tilapia affects metabolic trade-offs during developmental stages under a global warming scenario. Tropical tilapia reared at a stable temperature of 27 °C for a decade were divided into two temperature-experience groups for four generations of breeding. Each generation of one group was exposed to a single 15 °C cold-shock experience during its lifetime (cold-experienced CE group), and the other group was kept stably at 27 °C throughout their lifetimes (cold-naïve CN group). The offspring at early life stages from the CE and CN tilapia were then assessed by metabolomics-based profiling, and the results implied that parental cold-experience might affect energy provision during reproduction. Furthermore, at early life stages, progeny may be endowed with metabolic traits that help the animals cope with ambient temperature perturbations. This study also applied the feature rescaling and Uniform Manifold Approximation and Projection (UMAP) to visualize metabolic dynamics, and the result could effectively decompose the complex omic-based datasets to represent the energy trade-off variability. For example, the carbohydrate to free amino acid conversion and enhanced compensatory features appeared to be hypothermic-responsive traits. These multigenerational metabolic effects suggest that the tropical ectothermic tilapia may exhibit transgenerational phenotype plasticity, which could optimize energy allocation under ambient temperature challenges. Knowledge about such metabolism-related transgenerational plasticity effects in ectothermic aquatic species may allow us to better predict how adaptive mechanisms will affect fish populations in a climate with narrow temperature variation and frequent extreme weather events.
显示更多 [+] 显示较少 [-]Gestational PCB52 exposure induces hepatotoxicity and intestinal injury by activating inflammation in dam and offspring mice: A maternal and progeny study
2022
Xu, Ling-Ling | Zhang, Qin-Yao | Chen, Yu-Kui | Chen, Li-Jian | Zhang, Kai-Kai | Wang, Qi | Xie, Xiao-Li
Although Polychlorinated biphenyl (PCB) levels are decreased in the environment, the adverse effects of gestational exposure on the mother and offspring cannot be ignored due to the vulnerability of the fetus. In the present study, pregnant Balb/c mice were administered PCB52 (1 mg/kg BW/day) or corn oil vehicle by gavage until parturition. In the dams, PCB52 caused histopathological changes in the liver, higher serum levels of aminotransferase and alanine aminotransferase, and activated apoptosis and autophagy, suggesting hepatotoxicity. Overexpressed indicators of TLR4 pathway were observed in the liver of PCB52-exposed dams, indicated hepatic inflammation. Moreover, PCB52 exposure weakened the intestinal barrier and triggered inflammatory response, which might contribute to the hepatic inflammation by gut-liver axis. In the pups, prenatal PCB52 exposure affected the sex ratio at birth and reduced birth length and weights. Similar to the dams, prenatal PCB52 exposure induced hepatotoxicity in the pups without gender difference. Consistent with the alteration of gut microbiota, intestinal inflammation was confirmed, accompanying the disruption in the intestinal barrier and the activation of apoptosis and autophagy in the PCB52-exposed pups. Intestinal injury might be responsible for hepatotoxicity at least in part. Taken together, these findings suggested that gestational PCB52 exposure induced hepatic and intestinal injury in both maternal and offspring mice by arousing inflammation.
显示更多 [+] 显示较少 [-]Assessment of elevated CO2 concentrations and heat stress episodes in soybean cultivars growing in heavy metal polluted soils: Crop nutritional quality and food safety
2022
Blanco, Andrés | Högy, Petra | Zikeli, Sabine | Pignata, María L. | Rodriguez, Judith H.
The present study evaluated the interactive effects of global change and heavy metals on the growth and development of three soybean [Glycine max (L.) Merrill] cultivars and the consequences on yield and food safety. Soybean cultivars (Alim 3.14 from Argentina, and ES Mentor and Sigalia, from Germany) were grown until maturity in heavy metals polluted soils from the Rhine Valley, Germany, at two CO₂ concentrations (400 and 550 ppm) and heat stress (HS) episodes (9 days with 10 °C higher than maximum regular temperature) during the critical growth period in controlled environmental chambers. Different morpho-physiological parameters, heavy metal concentration in aerial organs, seed quality parameters, and toxicological index were recorded. The results showed that no morphological differences were observed related to CO₂. Moreover, Alim 3.14 showed the highest yield under control conditions, but it was more sensitive to climatic conditions than the German cultivars, especially to heat stress which strongly reduces the biomass of the fruits. Heavy metals concentration in soil exceeds the legislation limits for agricultural soils for Cd and Pb, with 1.6 and 487 mg kg⁻¹ respectively. In all cultivars, soybeans accumulated Cd in its aerial organs, and it could be translocated to fruits. Cd concentration in seeds ranged between 0.6 and 2.4 mg kg⁻¹, which exceed legislation limits and with toxicological risk to potential Chinese consumers. Pb levels were lower than Cd in seeds (0.03–0.17 mg kg⁻¹), and the accumulation were concentrated in the vegetative organs, with 93% of the Pb incorporated. Moreover, pods accumulated 11 times more Pb than seeds, which suggests that they act as a barrier to the passage of Pb to their offspring. These results evidence that soybean can easily translocate Cd, but not Pb, to reproductive organs. No regular patterns were observed in relation to climatic influence on heavy metal uptake.
显示更多 [+] 显示较少 [-]Simulated mobile communication frequencies (3.5 GHz) emitted by a signal generator affects the sleep of Drosophila melanogaster
2021
Wang, Yahong | Zhang, Hongying | Zhang, Ziyan | Sun, Boqun | Tang, Chao | Zhang, Lu | Jiang, Zhihao | Ding, Bo | Liao, Yanyan | Cai, Peng
With the rapid development of science and technology, 5G technology will be widely used, and biosafety concerns about the effects of 5G radiofrequency radiation on health have been raised. Drosophila melanogaster was selected as the model organism for our study, in which a 3.5 GHz radiofrequency radiation (RF-EMR) environment was simulated at intensities of 0.1 W/m², 1 W/m², and 10 W/m². The activity of parent male and offspring (F1) male flies was measured using a Drosophila activity monitoring system under short-term and long-term 3.5 GHz RF-EMR exposure. Core genes associated with heat stress, the circadian clock and neurotransmitters were detected by QRT-PCR technology, and the contents of GABA and glutamate were detected by UPLC-MS. The results show that short-term RF-EMR exposure increased the activity level and reduced the sleep duration while long-term RF-EMR exposure reduced the activity level and increased the sleep duration of F1 male flies. Under long-term RF-EMR, the expression of heat stress response-related hsp22, hsp26 and hsp70 genes was increased, the expression of circadian clock-related per, cyc, clk, cry, and tim genes was altered, the content of GABA and glutamate was reduced, and the expression levels of synthesis, transport and receptor genes were altered. In conclusion, long-term RF-EMR exposure enhances the heat stress response of offspring flies and then affects the expression of circadian clock and neurotransmitter genes, which leads to decreased activity, prolonged sleep duration, and improved sleep quality.
显示更多 [+] 显示较少 [-]Toxic Microcystis aeruginosa alters the resource allocation in Daphnia mitsukuri responding to fish predation cues
2021
Many prey organisms adaptively respond to predation risk by inducible defenses with underlying tradeoffs in resource allocation. Cyanobacterial blooms expose zooplankton to poor food conditions, affecting the herbivores’ fitness. Given the interferences on resources allocation and life history traits, poor-quality cyanobacteria are predicted to affect the adaptive predator-induced responses in zooplankton. Here, we exposed two clones (i.e., clones SH and ZJ) of the cladoceran Daphnia mitsukuri to different combinations of fish predation cues and diets containing toxic Microcystis aeruginosa (0%–30%). D. mitsukuri matured at a small size and had elongated relative tail spine as adaptive responses to fish cues. Despite the comparable tail spine defense, fish cue-induced changes in growth and reproduction in the clone SH were more pronounced than those in the clone ZJ under no M. aeruginosa. Animals accumulated microcystin in the whole body with increasing abundance of M. aeruginosa. However, the inducible enhanced tail spine allometry was not affected, resulting in unchanged tail spine defense by Daphnia under all M. aeruginosa treatments. By contrast, M. aeruginosa remarkably decreased the adaptive maturation size and the offspring number in all animals. However, the inducible reproductive effort tended to increase or remain unchanged depending on clones associated with the constant or decreased responses of the somatic growth effort under increasing M. aeruginosa. Our results suggested that toxic M. aeruginosa did not alter the resource allocation to antipredator morphological defense but affected the somatic growth and reproduction in D. mitsukuri under fish cues. The present study highlights the different effects of toxic cyanobacteria on adaptive predator-induced responses in zooplankton, promoting the understanding for the morphological defense-mediated predator–prey interactions in eutrophic environments.
显示更多 [+] 显示较少 [-]Parental and trophic transfer of nanoscale plastic debris in an assembled aquatic food chain as a function of particle size
2021
Monikh, Fazel Abdolahpur | Chupani, Latifeh | Vijver, Martina G. | Peijnenburg, Willie J.G.M.
The existing limitations in analytical techniques for characterization and quantification of nanoscale plastic debris (NPD) in organisms hinder understanding of the parental and trophic transfer of NPD in organisms. Herein, we used iron oxide-doped polystyrene (PS) NPD (Fe-PS-NPD) of 270 nm and Europium (Eu)-doped PS-NPD (Eu-PS-NPD) of 640 nm to circumvent these limitations and to evaluate the influence of particle size on the trophic transfer of NPD along an algae-daphnids food chain and on the reproduction of daphnids fed with NPD-exposed algae. We used Fe and Eu as proxies for the Fe-PS-NPD and Eu-Ps-NPD, respectively. The algae cells (Pseudokirchinella subcapitata) were exposed to 4.8 × 10¹⁰ particles/L of Fe-PS-NPD or Eu-PS-NPD for 72 h. A high percentage (>60%) of the NPD was associated with algal cells. Only a small fraction (<11%) of the NPD, however, was transferred to daphnids fed for 21 days on the NPD-exposed algae. The uptake and trophic transfer of the 270 nm Fe-PS-NPD were higher than those for the 640 nm Eu-PS-NPD, indicating that smaller NPD are more likely to transfer along food chains. After exposure to Fe-PS-NPD, the time to first brood was prolonged and the number of neonates per adult significantly decreased compared to the control without any exposure and compared to daphnids exposed to the Eu-Ps-NPD. The offspring of daphnids exposed to Eu-PS-NPD through algae, showed a traceable concentration of Eu, suggesting that NPD are transferred from parents to offspring. We conclude that NPD can be transferred in food chains and caused reproductive toxicity as a function of NPD size. Studies with prolonged exposure and weathered NPD are endeavored to increase environmental realism of the impacts determined.
显示更多 [+] 显示较少 [-]PCB52 exposure alters the neurotransmission ligand-receptors in male offspring and contributes to sex-specific neurodevelopmental toxicity
2020
Zhao, Dong | Wang, Qi | Zhou, Wen-Tao | Wang, Li-Bin | Yu, Hao | Zhang, Kai-Kai | Chen, Li-Jian | Xie, Xiao-Li
Polychlorinated biphenyls (PCBs) in the air are predominantly the less chlorinated congeners. Non-dioxin-like (NDL) low-chlorinated PCBs are more neurotoxic, and cause neurodevelopmental and neurobehavioral alterations in humans. However, the underlying mechanisms for this neurodevelopmental toxicity remain unknown. In the present study, Wistar rats were treated by gavage with PCB52 (1 mg/kg body weight) or corn oil from gestational day 7 to postnatal day 21. Both the body lengths and weights of the suckling rats at birth were significantly decreased by PCB52 treatment, suggesting developmental toxicity. Although no obvious histopathological changes were observed in the brain, using RNA-sequencing, 208 differentially expressed genes (DEGs) were identified in the striatum of PCB52-treated male offspring, while just 13 DEGs were identified in female offspring, suggesting sex-specific effects. Furthermore, using Gene Ontology enrichment analysis, neurodevelopmental processes, neurobehavioral alterations, and neurotransmission changes were enriched from the 208 DEGs in male offspring. Similarly, using Kyoto Encyclopedia of Genes and Genomes enrichment analysis, neuroactive ligand receptor interactions and multiple synapse pathways were enriched in male offspring, implying dysfunction of the neurotransmission system. Reductions in the protein expressions of these ligand receptors were also identified in the striatum, cerebral cortex, and hippocampus using western blotting methods. Taken together, our findings indicate that PCB52 exposure during gestation and lactation results in the abnormal expression of neurotransmission ligand-receptors in male offspring with a sex bias, and that this may contribute to neurodevelopmental toxicity.
显示更多 [+] 显示较少 [-]Environmental co-exposure to TBT and Cd caused neurotoxicity and thyroid endocrine disruption in zebrafish, a three-generation study in a simulated environment
2020
Li, Ping | Li, Zhi-Hua
Although the coexistence of heavy metals and environmental hormones always occur in aquatic environment, the information of the combined impacts remains unclear. To explore the multi-generational toxicity of cadmium (Cd) and tributyltin (TBT), adult zebrafish (Danio rerio) (F0) were exposed to different treated groups (100 ng/l Cd, 100 ng/l TBT and their mixture) for 90 d, with their offspring (F1 and F2) subsequently reared in the same exposure solutions corresponding to their parents. Both developmental neurotoxicity and thyroid disturbances were examined in the three (F0, F1, and F2) generations. Our results showed that co-exposure to Cd and TBT induced the developmental neurotoxicity in F1 and F2 generations, reflected by the significant lower levels of neurotransmitters (dopamine and serotonin) and the inhibited acetylcholinesterase (AChE) activities. And the thyroid endocrine disruption were observed in the two-generations larval offspring by parental exposure to Cd and/or TBT, including the significantly decreasing levels of thyroid hormones and the down-regulated the expression of genes involved in the hypothalamus-pituitary-thyroid axis, compared to the control. Additional, the embryonic toxicity and growth inhibition were also determined in the fish larvae. Overall, this study examined the impacts of parental co-exposure to Cd and TBT, with regard to developmental inhibition, nervous system damage and endocrine disruption, which highlighted that co-exposure influences are complicated and need to be considered for accurate environmental risk assessment.
显示更多 [+] 显示较少 [-]Multigenerational exposure to TiO2 nanoparticles in soil stimulates stress resistance and longevity of survived C. elegans via activating insulin/IGF-like signaling
2020
Hu, Zhao | Hou, Jie | Zhu, Ya | Lin, Daohui
With increasing release of nanoparticles (NPs) into the environment, soil organisms likely suffer from high dose and long duration of NPs contamination, while the effect of NPs across multiple generations in soil is rarely studied. Herein, we investigated how multigenerational exposure to different crystal forms (anatase, rutile, and their mixture) of TiO₂ NPs (nTiO₂) affected the survival, behavior, physiological and biochemical traits, and lifespan of nematodes (C. elegans) in a paddy soil. The soil property changed very slightly after being spiked with nTiO₂, and the toxicities of three nTiO₂ forms were largely comparable. The nTiO₂ exposure adversely influenced the survival and locomotion of nematodes, and increased intracellular reactive oxygen species (ROS) generation. Interestingly, the toxic effect gradually attenuated and the lifespan of survived nematodes increased from the P0 to F3 generation, which was ascribed to the survivor selection and stimulatory effect. The lethal effect and the increased oxidative stress may continuously screen out offspring possessing stronger anti-stress capabilities. Moreover, key genes (daf-2, age-1, and skn-1) in the insulin/IGF-like signaling (IIS) pathway actively responded to the nTiO₂ exposure, which further optimized the selective expression of downstream genes, increased the antioxidant enzyme activities and antioxidant contents, and thereby increased the stress resistance and longevity of survived nematodes across successive generations. Our findings highlight the crucial role of bio-responses in the progressively decreased toxicity of nTiO₂, and add new knowledge on the long-term impact of soil nTiO₂ contamination.
显示更多 [+] 显示较少 [-]Recessivity of pyrethroid resistance and limited interspecies hybridization across Hyalella clades supports rapid and independent origins of resistance
2020
Sever, Haleigh C. | Heim, Jennifer R. | Lydy, Victoria R. | Fung, Courtney Y. | Huff Hartz, Kara E. | Giroux, Marissa S. | Andrzejczyk, Nicolette | Major, Kaley M. | Poynton, Helen C. | Lydy, Michael J.
Several populations of the amphipod, Hyalella azteca, have developed resistance to pyrethroid insecticides due to non-target exposure, but the dominance of the resistance trait is unknown. The current study investigated the dominance level of point mutations in natural populations of insecticide-resistant H. azteca and determined whether H. azteca from different clades with and without resistant alleles can hybridize and produce viable offspring. A parent generation (P₀) of non-resistant homozygous wild type H. azteca was crossbred with pyrethroid-resistant homozygous mutant animals and the tolerance of the filial 1 (F₁) generation to the pyrethroid insecticide, permethrin, was measured. Then the genotypes of the F₁ generation was examined to assure heterozygosity. The resistant parents had permethrin LC₅₀ values that ranged from 52 to 82 times higher than the non-resistant animals and both crossbreeding experiments produced heterozygous hybrid offspring that had LC₅₀ values similar to the non-resistant H. azteca parent. Dominance levels calculated for each of the crosses showed values close to 0, confirming that the L925I and L925V mutations were completely recessive. The lack of reproduction by hybrids of the C x D breeding confirmed that these clades are reproductively isolated and therefore introgression of adaptive alleles across these clades is unlikely. Potential evolutionary consequences of this selection include development of population bottlenecks, which may arise leading to fitness costs and reduced genetic diversity of H. azteca.
显示更多 [+] 显示较少 [-]