细化搜索
结果 1-10 的 200
Physiological Evaluation of Apricot (Prunus armeniaca L.) Leaves to Air Pollution for Biomonitoring of Atmospheric Quality
2018
zouari, M. | Elloumi, N. | Mezghani, I. | labrousse, P. | Ben Rouina, B. | Ben Abdallah, F. | Ben Ahmed, C.
Industrialization releases significant amounts of various air pollutants such as F, Cd, Pb, particulate matter, etc., which can in turn have a deleterious effect on a variety of biochemical and physiological processes as well as the structural organization within the cells. Responses from plants species to air pollutants is varied with certain species being very sensitive to such pollutants, ending up with well visible and measurable symptoms. Morphological damage is generally visible through lesions on the aerial parts, while biochemical and physiological changes which are invisible can be measured and quantified. This study has been designed to investigate the biochemical and physiological biomarkers of apricot (Prunus armeniaca L.) exposed to air pollution. It has been observed that, in comparison to unpolluted sites, lipid peroxidation level has increased in the leaves of apricot trees, grown in polluted areas, whereas photosynthetic capacity (Net photosynthesis, stomatal conductance, transpiration rate, total chlorophyll, and carotenoids) along with osmotic regulator (proline and soluble sugars) levels have declined. In P. armeniaca leaves, these symptoms can be used as indicators of air pollution stress for its early diagnosis, making them a reliable marker for a particular physiological disorder.
显示更多 [+] 显示较少 [-]Understanding aquaporin regulation defining silicon uptake and role in arsenic, antimony and germanium stress in pigeonpea (Cajanus cajan)
2022
Mandlik, Rushil | Singla, Pankaj | Kumawat, Surbhi | Khatri, Praveen | Ansari, Waquar | Singh, Anuradha | Sharma, Yogesh | Singh, Archana | Solanke, Amol | Nadaf, Altafhusain | Sonah, Humira | Deshmukh, Rupesh
Understanding of aquaporins (AQPs) facilitating the transport of water and many other small solutes including metalloids like silicon (Si) and arsenic (As) is important to develop stress tolerant cultivars. In the present study, 40 AQPs were identified in the genome of pigeonpea (Cajanus cajan), a pulse crop widely grown in semi-arid region and areas known to affected with heavy metals like As. Conserved domains, variation at NPA motifs, aromatic/arginine (ar/R) selectivity filters, and pore morphology defined here will be crucial in predicting solute specificity of pigeonpea AQPs. The study identified CcNIP2-1 as an AQP predicted to transporter Si (beneficial element) as well as As (hazardous element). Further Si quantification in different tissues showed about 1.66% Si in leaves which confirmed the predictions. Furthermore, scanning electron microscopy showed a higher level of Si accumulation in trichomes on the leaf surface. A significant alleviation in level of As, Sb and Ge stress was also observed when these heavy metals were supplemented with Si. Estimation of relative water content, H₂O₂, lipid peroxidation, proline, total chlorophyll content and other physiological parameters suggested Si derived stress tolerance. Extensive transcriptome profiling under different developmental stages from germination to senescence was performed to understand the tissue-specific regulation of different AQPs. For instance, high expression of TIP3s was observed only in reproductive tissues. Co-expression network developed using transcriptome data from 30 different conditions and tissues, showed interdependency of AQPs. Expression profiling of pigeonpea performed using real time PCR showed differential expression of AQPs after Si supplementation. The information generated about the phylogeny, distribution, molecular evolution, solute specificity, and gene expression dynamics in article will be helpful to better understand the AQP transport system in pigeonpea and other legumes.
显示更多 [+] 显示较少 [-]Ameliorative effects of plant growth promoting bacteria, zinc oxide nanoparticles and oxalic acid on Luffa acutangula grown on arsenic enriched soil
2022
Tanveer, Yashfa | Yasmin, Humaira | Nosheen, Asia | Ali, Sajad | Ahmad, Ajaz
Arsenic (As) contamination and bioaccumulation are a serious threat to agricultural plants. To address this issue, we checked the efficacy of As tolerant plant growth promoting bacteria (PGPB), zinc oxide nanoparticles (ZnO NPs) and oxalic acid (OA) in Luffa acutangula grown on As rich soil. The selected most As tolerant PGPB i.e Providencia vermicola exhibited plant growth promoting features i.e solubilzation of phosphate, potassium and siderophores production. Innovatively, we observed the synergistic effects of P. vermicola, ZnO NPs (10 ppm) and OA (100 ppm) in L. acutangula grown on As enriched soil (150 ppm). Our treatments both as alone and in combination alleviated As toxicity exhibited by better plant growth and metabolism. Results revealed significantly enhanced photosynthetic pigments, proline, relative water content, total sugars, proteins and indole acetic acid along with As amelioration in L. acutangula. Furthermore, upregulated plant resistance was manifested with marked reduction in the lipid peroxidation and electrolyte leakage and pronounced antagonism of As and zinc content in leaves under toxic conditions. These treatments also improved level of nutrients, abscisic acid and antioxidants to mitigate As toxicity. This marked improvement in plants’ defense mechanism of treated plants under As stress is confirmed by less damaged leaves cell structures observed through the scanning electron micrographs. We also found substantial decrease in the As bioaccumulation in the L. acutangula shoots and roots by 40 and 58% respectively under the co-application of P. vermicola, ZnO NPs and OA in comparison with control. Moreover, the better activity of soil phosphatase and invertase was assessed under the effect of our application. These results cast a new light on the application of P. vermicola, ZnO NPs and OA in both separate and combined form as a feasible and ecofriendly tool to alleviate As stress in L. acutangula.
显示更多 [+] 显示较少 [-]Sodium hydrosulfite together with silicon detoxifies arsenic toxicity in tomato plants by modulating the AsA-GSH cycle
2022
Kaya, Cengiz | Ashraf, Muhammad
The main intent of the current research was to appraise if combined application of hydrogen sulfide (H₂S, 0.2 mM) and silicon (Si 2.0 mM) could improve tolerance of tomato plants to arsenic (As as sodium hydrogen arsenate heptahydrate, 0.2 mM) stress. Plant growth, chlorophylls (Chl), PSII maximum efficiency (Fv/Fm), H₂S concentration and L-cysteine desulfhydrase activity were found to be suppressed, but leaf and root As, leaf proline content, phytochelatins, malondialdehyde (MDA) and H₂O₂ as well as the activity of lipoxygenase (LOX) increased under As stress. H₂S and Si supplied together or alone enhanced the concentrations of key antioxidant biomolecules such as ascorbic acid, and reduced glutathione and the activities of key antioxidant system enzymes including catalase (CAT), superoxide dismutase (SOD), dehydroascorbate reductase (DHAR), glutathione reductase (GR), and glutathione S-transferase (GST). In comparison with individual application of H₂S or Si, the joint supplementation of both had better effect in improving growth and key biochemical processes, and reducing tissue As content, suggesting a putative collaborative role of both molecules in improving tolerance to As-toxicity in tomato plants.
显示更多 [+] 显示较少 [-]Response of soybean (Glycine max L.) seedlings to polystyrene nanoplastics: Physiological, biochemical, and molecular perspectives
2022
Surgun-Acar, Yonca
Micro and nanoplastics are new generation contaminants of global concern. It is important to evaluate the effects on edible products due to the presence of micro- and nano-sized plastics in the treated wastewater. A hydroponic experiment was carried out to explore the effect of polsytrene nanoplastics (PS-NPs; 20 nm) at different concentrations (0, 12.5, 25, and 50 mg L⁻¹) on Glycine max L. (soybean) seedlings for 7-days. In the current study, firstly the uptake of PS-NPs by Glycine max L. (soybean) roots were confirmed by laser confocal scanning microscope. Exposure to PS-NPs, negatively affected growth parameters and increased Fe, Zn and Mn contents in roots and leaves of soybean seedlings. PS-NPs treatments caused oxidative stress in soybean seedlings. The hydrogen peroxide and malondialdehyde contents, showed similar increase pattern in seedlings exposed to PS-NPs. Response to PS-NPs, the level of antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase, and guaiacol peroxidase) and proline content were generally enhanced in roots and leaves of soybean. The expression level of stress-related genes examined in the study included CSD5, FSD3, APX1, and POD up-regulated in PS-NPs treated-soybean seedlings in a tissue specific manner. The results of the present study showed the adverse effects of PS-NPs on soybean seedlings, which may have important implications for the risk assessment of NPs on crop production and environmental safety.
显示更多 [+] 显示较少 [-]Endophytic fungus Serendipita indica reduces arsenic mobilization from root to fruit in colonized tomato plant
2022
Shukla, Jagriti | Mohd, Shayan | Kushwaha, Aparna S. | Narayan, Shiv | Saxena, Prem N. | Bahadur, Lal | Mishra, Aradhana | Shirke, Pramod Arvind | Kumar, Manoj
The accumulation of arsenic in crop plants has become a worldwide concern that affects millions of people. The major source of arsenic in crop plants is irrigation water and soil. In this study, Serendipita indica, an endophytic fungus, was used to investigate the protection against arsenic and its accumulation in the tomato plant. We found that inoculation of S. indica recovers seed germination, plant growth and improves overall plant health under arsenic stress. A hyper-colonization of fungus in the plant root was observed under arsenic stress, which results in reduced oxidative stress via modulation of antioxidative enzymes, glutathione, and proline levels. Furthermore, fungal colonization restricts arsenic mobilization from root to shoot and fruit by accumulating it exclusively in the root. We observed that fungal colonization enhances the arsenic bioaccumulation factor 1.48 times in root and reduces the arsenic translocation factor by 2.96 times from root to shoot and 13.6 times from root to fruit compared to non colonized plants. Further, investigation suggests that S. indica can tolerate arsenic by immobilizing it on the cell wall and accumulating it in the vacuole. This study shows that S. indica may be helpful for the reduction of arsenic accumulation in crops grown in arsenic-contaminated agriculture fields.
显示更多 [+] 显示较少 [-]Increased fluctuation of sulfur alleviates cadmium toxicity and exacerbates the expansion of Spartina alterniflora in coastal wetlands
2022
Wu, Yueming | Leng, Zhanrui | Li, Jian | Jia, Hui | Yan, Chongling | Hong, Hualong | Wang, Qiang | Lu, Yanyan | Du, Daolin
Evidence suggests that the invasion of Spartina alterniflora (S. alterniflora) poses potentially serious risks to the stability of coastal wetlands, an ecosystem that is extremely vulnerable to both biological and non-biological threats. However, the effects and mechanisms of sulfur (S) in mediating the growth and expansion of S. alterniflora are poorly understood, particularly when sediments are contaminated with cadmium (Cd). A 6-month greenhouse study was conducted to evaluate the mediating effect of S on Cd tolerance and growth of S. alterniflora. Treatments consisted of a factorial combination of three S rates (applied as Na₂SO₄; 0, 500, 1000 mg kg⁻¹ dry weight (DW), as S₀, S₅₀₀, and S₁₀₀₀) and four Cd rates (applied as CdCl₂; 0, 1, 2, 4 mg kg⁻¹ DW, as Cd₀, Cd₁, Cd₂, and Cd₄). Results showed that although the exogenous S supply obviously increased Cd accumulation in roots (up to 71.22 ± 6.43 mg kg⁻¹ DW) due to the decrease of Fe concentration in iron plaque (down to 4.02 ± 1.18 mg g⁻¹ DW), biomass reduction and oxidative stress in plant tissues were significantly alleviated. The addition of S significantly up-regulated the concentration of compounds related to Cd tolerance, including proline and glutathione. Therefore, the translocation of Cd was restricted, and plant growth was not impacted. The present study demonstrated that the exogenous sulfur supply could promote the growth of S. alterniflora and enhance its tolerance to Cd. Therefore, under the effects of S. alterniflora, the increased fluctuations of S pool caused by the release and deposition of S might further exacerbate S. alterniflora expansion in Cd contaminated coastal wetlands.
显示更多 [+] 显示较少 [-]High-resolution metabolomics of exposure to tobacco smoke during pregnancy and adverse birth outcomes in the Atlanta African American maternal-child cohort
2022
Tan, Youran | Barr, Dana Boyd | Ryan, P Barry | Fedirko, Veronika | Sarnat, Jeremy A. | Gaskins, Audrey J. | Chang, Che-Jung | Tang, Ziyin | Marsit, Carmen J. | Corwin, Elizabeth J. | Jones, Dean P. | Dunlop, Anne L. | Liang, Donghai
Exposure to tobacco smoke during pregnancy has been associated with a series of adverse reproductive outcomes; however, the underlying molecular mechanisms are not well-established. We conducted an untargeted metabolome-wide association study to identify the metabolic perturbations and molecular mechanisms underlying the association between cotinine, a widely used biomarker of tobacco exposure, and adverse birth outcomes. We collected early and late pregnancy urine samples for cotinine measurement and serum samples for high-resolution metabolomics (HRM) profiling from 105 pregnant women from the Atlanta African American Maternal-Child cohort (2014–2016). Maternal metabolome perturbations mediating prenatal tobacco smoke exposure and adverse birth outcomes were assessed by an untargeted HRM workflow using generalized linear models, followed by pathway enrichment analysis and chemical annotation, with a meet-in-the-middle approach. The median maternal urinary cotinine concentrations were 5.93 μg/g creatinine and 3.69 μg/g creatinine in early and late pregnancy, respectively. In total, 16,481 and 13,043 metabolic features were identified in serum samples at each visit from positive and negative electrospray ionization modes, respectively. Twelve metabolic pathways were found to be associated with both cotinine concentrations and adverse birth outcomes during early and late pregnancy, including tryptophan, histidine, urea cycle, arginine, and proline metabolism. We confirmed 47 metabolites associated with cotinine levels, preterm birth, and shorter gestational age, including glutamate, serine, choline, and taurine, which are closely involved in endogenous inflammation, vascular reactivity, and lipid peroxidation processes. The metabolic perturbations associated with cotinine levels were related to inflammation, oxidative stress, placental vascularization, and insulin action, which could contribute to shorter gestations. The findings will support the further understanding of potential internal responses in association with tobacco smoke exposures, especially among African American women who are disproportionately exposed to high tobacco smoke and experience higher rates of adverse birth outcomes.
显示更多 [+] 显示较少 [-]Chromium in plant growth and development: Toxicity, tolerance and hormesis
2022
López-Bucio, Jesús Salvador | Ravelo-Ortega, Gustavo | López-Bucio, José
Research over the last three decades showed that chromium, particularly the oxyanion chromate Cr(VI) behaves as a toxic environmental pollutant that strongly damages plants due to oxidative stress, disruption of nutrient uptake, photosynthesis and metabolism, and ultimately, represses growth and development. However, mild Cr(VI) concentrations promote growth, induce adventitious root formation, reinforce the root cap, and produce twin roots from single root meristems under conditions that compromise cell viability, indicating its important role as a driver for root organogenesis. In recent years, considerable advance has been made towards deciphering the molecular mechanisms for root sensing of chromate, including the identification of regulatory proteins such as SOLITARY ROOT and MEDIATOR 18 that orchestrate the multilevel dynamics of the oxyanion. Cr(VI) decreases the expression of several glutamate receptors, whereas amino acids such as glutamate, cysteine and proline confer protection to plants from hexavalent chromium stress. The crosstalk between plant hormones, including auxin, ethylene, and jasmonic acid enables tissues to balance growth and defense under Cr(VI)-induced oxidative damage, which may be useful to better adapt crops to biotic and abiotic challenges. The highly contrasting responses of plants manifested at the transcriptional and translational levels depend on the concentration of chromate in the media, and fit well with the concept of hormesis, an adaptive mechanism that primes plants for resistance to environmental challenges, toxins or pollutants. Here, we review the contrasting facets of Cr(VI) in plants including the cellular, hormonal and molecular aspects that mechanistically separate its toxic effects from biostimulant outputs.
显示更多 [+] 显示较少 [-]Hexavalent chromium leads to differential hormetic or damaging effects in alfalfa (Medicago sativa L.) plants in a concentration-dependent manner by regulating nitro-oxidative and proline metabolism
2020
Christou, Anastasis | Georgiadou, Egli C. | Zissimos, Andreas M. | Christoforou, Irene C. | Christofi, Christos | Neocleous, Damianos | Dalias, Panagiotis | Torrado, Sofia O.C.A. | Argyraki, Ariadne | Fotopoulos, Vasileios
Chromium has been proven to be extremely phytotoxic. This study explored the impacts of increasing Cr(VI) exposure (up to 10 mg L⁻¹ K₂Cr₂O₇) on the growth and development of alfalfa plants and adaptation responses employed, in an environmentally relevant context. The threshold concentration of K₂Cr₂O₇ in irrigation water beyond which stress responses are initiated is 1 mg L⁻¹. Lower Cr(VI) exposure (0.5 mg L⁻¹ K₂Cr₂O₇) induced hormesis, evident through increased biomass and larger leaves, likely mediated by increased NO content (supported by elevated NR enzymatic activity and overexpression of NR and ndh genes). Elevated Cr(VI) exposure (5 and 10 mg L⁻¹ K₂Cr₂O₇) resulted in reduced biomass and smaller leaves, and lower levels of photosynthetic pigment (10 mg L⁻¹ K₂Cr₂O₇). Higher levels of lipid peroxidation, H₂O₂ and NO contents in these plants suggested nitro-oxidative stress. Stress responses included increased SOD and CAT enzymatic activities, further supported to some extent by MnSOD, FeSOD, Cu/ZnSOD and CAT transcripts levels. GST7 and GST17 gene expression patterns, as well as proline content, P5CS enzymatic activity and corresponding P5CS and P5CR gene expression levels emphasized the role of proline and GSTs in the adaptation responses. Results highlight the importance of managing Cr(VI) levels in irrigation water.
显示更多 [+] 显示较少 [-]