细化搜索
结果 1-10 的 200
Physiological Evaluation of Apricot (Prunus armeniaca L.) Leaves to Air Pollution for Biomonitoring of Atmospheric Quality 全文
2018
zouari, M. | Elloumi, N. | Mezghani, I. | labrousse, P. | Ben Rouina, B. | Ben Abdallah, F. | Ben Ahmed, C.
Industrialization releases significant amounts of various air pollutants such as F, Cd, Pb, particulate matter, etc., which can in turn have a deleterious effect on a variety of biochemical and physiological processes as well as the structural organization within the cells. Responses from plants species to air pollutants is varied with certain species being very sensitive to such pollutants, ending up with well visible and measurable symptoms. Morphological damage is generally visible through lesions on the aerial parts, while biochemical and physiological changes which are invisible can be measured and quantified. This study has been designed to investigate the biochemical and physiological biomarkers of apricot (Prunus armeniaca L.) exposed to air pollution. It has been observed that, in comparison to unpolluted sites, lipid peroxidation level has increased in the leaves of apricot trees, grown in polluted areas, whereas photosynthetic capacity (Net photosynthesis, stomatal conductance, transpiration rate, total chlorophyll, and carotenoids) along with osmotic regulator (proline and soluble sugars) levels have declined. In P. armeniaca leaves, these symptoms can be used as indicators of air pollution stress for its early diagnosis, making them a reliable marker for a particular physiological disorder.
显示更多 [+] 显示较少 [-]Modulation of osmoprotection and antioxidant defense by exogenously applied acetate enhances cadmium stress tolerance in lentil seedlings 全文
2022
Shahadat Hossain, Md. | Abdelrahman, Mostafa | Tran, Cuong Duy | Nguyen, Kien Huu | Chu, Ha Duc | Watanabe, Yasuko | Fujita, Masayuki | Tran, Lam-son Phan
To examine the potential role of acetate in conferring cadmium (Cd) stress tolerance in lentil (Lens culinaris), several phenotypical and physio-biochemical properties have been examined in Cd-stressed lentil seedlings following acetate applications. Acetate treatment inhibited the translocation of Cd from roots to shoots, which resulted in a minimal reduction in photosynthetic pigment contents. Additionally, acetate-treated lentil showed higher shoot (1.1 and 11.72%) and root (4.98 and 30.64%) dry weights compared with acetate-non-treated plants under low-Cd and high-Cd concentrations, respectively. Concurrently, acetate treatments increase osmoprotection under low-Cd stress through proline accumulation (24.69%), as well as enhancement of antioxidant defense by increasing ascorbic acid content (239.13%) and catalase activity (148.51%) under high-Cd stress. Acetate-induced antioxidant defense resulted in a significant diminution in hydrogen peroxide, malondialdehyde and electrolyte leakage in Cd-stressed lentil seedlings. Our results indicated that acetate application mitigated oxidative stress-induced damage by modulating antioxidant defense and osmoprotection, and reducing root-to-shoot Cd transport. These findings indicate an important contribution of acetate in mitigating the Cd toxicity during growth and development of lentil seedlings, and suggest that the exogenous applications of acetate could be an economical and new avenue for controlling heavy metal-caused damage in lentil, and potentially in many other crops.
显示更多 [+] 显示较少 [-]Endophytic fungus Serendipita indica reduces arsenic mobilization from root to fruit in colonized tomato plant 全文
2022
Shukla, Jagriti | Mohd, Shayan | Kushwaha, Aparna S. | Narayan, Shiv | Saxena, Prem N. | Bahadur, Lal | Mishra, Aradhana | Shirke, Pramod Arvind | Kumar, Manoj
The accumulation of arsenic in crop plants has become a worldwide concern that affects millions of people. The major source of arsenic in crop plants is irrigation water and soil. In this study, Serendipita indica, an endophytic fungus, was used to investigate the protection against arsenic and its accumulation in the tomato plant. We found that inoculation of S. indica recovers seed germination, plant growth and improves overall plant health under arsenic stress. A hyper-colonization of fungus in the plant root was observed under arsenic stress, which results in reduced oxidative stress via modulation of antioxidative enzymes, glutathione, and proline levels. Furthermore, fungal colonization restricts arsenic mobilization from root to shoot and fruit by accumulating it exclusively in the root. We observed that fungal colonization enhances the arsenic bioaccumulation factor 1.48 times in root and reduces the arsenic translocation factor by 2.96 times from root to shoot and 13.6 times from root to fruit compared to non colonized plants. Further, investigation suggests that S. indica can tolerate arsenic by immobilizing it on the cell wall and accumulating it in the vacuole. This study shows that S. indica may be helpful for the reduction of arsenic accumulation in crops grown in arsenic-contaminated agriculture fields.
显示更多 [+] 显示较少 [-]High-resolution metabolomics of exposure to tobacco smoke during pregnancy and adverse birth outcomes in the Atlanta African American maternal-child cohort 全文
2022
Tan, Youran | Barr, Dana Boyd | Ryan, P Barry | Fedirko, Veronika | Sarnat, Jeremy A. | Gaskins, Audrey J. | Chang, Che-Jung | Tang, Ziyin | Marsit, Carmen J. | Corwin, Elizabeth J. | Jones, Dean P. | Dunlop, Anne L. | Liang, Donghai
Exposure to tobacco smoke during pregnancy has been associated with a series of adverse reproductive outcomes; however, the underlying molecular mechanisms are not well-established. We conducted an untargeted metabolome-wide association study to identify the metabolic perturbations and molecular mechanisms underlying the association between cotinine, a widely used biomarker of tobacco exposure, and adverse birth outcomes. We collected early and late pregnancy urine samples for cotinine measurement and serum samples for high-resolution metabolomics (HRM) profiling from 105 pregnant women from the Atlanta African American Maternal-Child cohort (2014–2016). Maternal metabolome perturbations mediating prenatal tobacco smoke exposure and adverse birth outcomes were assessed by an untargeted HRM workflow using generalized linear models, followed by pathway enrichment analysis and chemical annotation, with a meet-in-the-middle approach. The median maternal urinary cotinine concentrations were 5.93 μg/g creatinine and 3.69 μg/g creatinine in early and late pregnancy, respectively. In total, 16,481 and 13,043 metabolic features were identified in serum samples at each visit from positive and negative electrospray ionization modes, respectively. Twelve metabolic pathways were found to be associated with both cotinine concentrations and adverse birth outcomes during early and late pregnancy, including tryptophan, histidine, urea cycle, arginine, and proline metabolism. We confirmed 47 metabolites associated with cotinine levels, preterm birth, and shorter gestational age, including glutamate, serine, choline, and taurine, which are closely involved in endogenous inflammation, vascular reactivity, and lipid peroxidation processes. The metabolic perturbations associated with cotinine levels were related to inflammation, oxidative stress, placental vascularization, and insulin action, which could contribute to shorter gestations. The findings will support the further understanding of potential internal responses in association with tobacco smoke exposures, especially among African American women who are disproportionately exposed to high tobacco smoke and experience higher rates of adverse birth outcomes.
显示更多 [+] 显示较少 [-]Increased fluctuation of sulfur alleviates cadmium toxicity and exacerbates the expansion of Spartina alterniflora in coastal wetlands 全文
2022
Wu, Yueming | Leng, Zhanrui | Li, Jian | Jia, Hui | Yan, Chongling | Hong, Hualong | Wang, Qiang | Lu, Yanyan | Du, Daolin
Evidence suggests that the invasion of Spartina alterniflora (S. alterniflora) poses potentially serious risks to the stability of coastal wetlands, an ecosystem that is extremely vulnerable to both biological and non-biological threats. However, the effects and mechanisms of sulfur (S) in mediating the growth and expansion of S. alterniflora are poorly understood, particularly when sediments are contaminated with cadmium (Cd). A 6-month greenhouse study was conducted to evaluate the mediating effect of S on Cd tolerance and growth of S. alterniflora. Treatments consisted of a factorial combination of three S rates (applied as Na₂SO₄; 0, 500, 1000 mg kg⁻¹ dry weight (DW), as S₀, S₅₀₀, and S₁₀₀₀) and four Cd rates (applied as CdCl₂; 0, 1, 2, 4 mg kg⁻¹ DW, as Cd₀, Cd₁, Cd₂, and Cd₄). Results showed that although the exogenous S supply obviously increased Cd accumulation in roots (up to 71.22 ± 6.43 mg kg⁻¹ DW) due to the decrease of Fe concentration in iron plaque (down to 4.02 ± 1.18 mg g⁻¹ DW), biomass reduction and oxidative stress in plant tissues were significantly alleviated. The addition of S significantly up-regulated the concentration of compounds related to Cd tolerance, including proline and glutathione. Therefore, the translocation of Cd was restricted, and plant growth was not impacted. The present study demonstrated that the exogenous sulfur supply could promote the growth of S. alterniflora and enhance its tolerance to Cd. Therefore, under the effects of S. alterniflora, the increased fluctuations of S pool caused by the release and deposition of S might further exacerbate S. alterniflora expansion in Cd contaminated coastal wetlands.
显示更多 [+] 显示较少 [-]Influence of fuel oil on Platymonas helgolandica: An acute toxicity evaluation to amino acids 全文
2021
Li, Na | Liu, Yu | Liang, Zhengyu | Lou, Yadi | Liu, Yuxin | Zhao, Xinda | Wang, Guoguang
It is highly likely that the toxicity of water accommodated fractions (WAF) will influence marine microalgae, and consequently lead to potential risk for the marine ecological environment. However, it was often neglected whether WAF can influence the transformation of relative compounds in organisms. The metabolism of amino acids (AAs) can be used to track physiological changes in microalgae because amino acids are the basis of proteins and enzymes. In this study, using marine Chlorophyta Platymonas helgolandica as the test organism, the effects of different concentrations of WAF on AA compositions and stable carbon isotope ratios (δ¹³C) of individual AAs of Platymonas helgolandica were investigated. The results showed that the WAF of #180 fuel oil had an obvious suppressing effect on the growth and chlorophyll a content of microalgae. The growth inhibitory rate at 96 h was 80.66% at a WAF concentration of 0.50 mg L⁻¹ compared with the control. Furthermore, seven among the 16 AAs, including alanine, cysteine, proline, aspartic acid, lysine, histidine and tyrosine, had relatively high abundance. Under the glycolysis pathway, the cysteine abundance was higher than control, meaning that the biosynthesized pathway of alanine through cysteine as a precursor could be damaged. Phosphoenolpyruvate (PEP) was an important synthesis precursor of alanine (leucine) and aromatic AA family (Phenylalanine and tyrosine), and played an important role in δ¹³CAAₛ fractionation under the WAF stress. Under the TCA pathway, to protect cell metabolism activities under WAF stress, the δ¹³C value of threonine and proline abundance in microalgae with the increase in WAF stress. Therefore, δ¹³CAAₛ fractionation can be used as a novel method for toxicity evaluation of WAF on future.
显示更多 [+] 显示较少 [-]Impact of metal-oxide nanoparticles on growth, physiology and yield of tomato (Solanum lycopersicum L.) modulated by Azotobacter salinestris strain ASM 全文
2021
Ahmed, Bilal | Syed, Asad | Rizvi, Asfa | Shahid, Mohammad | Bahkali, Ali H. | Khan, Mohammad Saghir | Musarrat, Javed
The current study for the first time demonstrates the interference of a free-living, N₂-fixing, and nanoparticle (NP) tolerant Azotobacter salinestris strain ASM recovered from metal-polluted soil with tomato plant-metal oxide NPs (ZnO, CuO, Al₂O₃, and TiO₂) interactions in a sandy clay loam soil system with bulk materials as control. Tomato plants were grown till full maturity in soils amended with 20–2000 mg kg⁻¹ of each metal-oxide NP with and without seed biopriming and root-inoculation of A. salinestris. A. salinestris was found metabolically active, producing considerably high amounts of bioactive indole-3-acetic-acid, morphologically unaffected, and with low alteration of cell membrane permeability under 125–1500 μgml⁻¹ of NPs. However, ZnO-NPs slightly alter bacterial membrane permeability. Besides, A. salinestris secreted significantly higher amounts of extracellular polymeric substance (EPS) even under NP exposure, which could entrap the NPs and form metal-EPS complex as revealed and quantified by SEM-EDX. NPs were also found adsorbed on bacterial biomass. EPS stabilized the NPs and provided negative zeta potential to NPs. Following soil application, A. salinestris improved the plant performance and augmented the yield of tomato fruits and lycopene content even in NPs stressed soils. Interestingly, A. salinestris inoculation enhanced photosynthetic pigment formation, flower attributes, plant and fruit biomass, and reduced proline level. Bacterial inoculation also reduced the NP’s uptake and accumulation significantly in vegetative organs and fruits. The organ wise order of NP’s internalization was roots > shoots > fruits. Conclusively, A. salinestris inoculation could be an alternative to increase the production of tomato in metal-oxide NPs contaminated soils.
显示更多 [+] 显示较少 [-]Insights into acetate-mediated copper homeostasis and antioxidant defense in lentil under excessive copper stress 全文
2020
Shahadat Hossain, Md. | Abdelrahman, Mostafa | Tran, Cuong Duy | Nguyen, Kien Huu | Chu, Ha Duc | Watanabe, Yasuko | Hasanuzzaman, Mirza | Mohsin, Sayed Mohammad | Fujita, Masayuki | Tran, Lam-son Phan
Gradual contamination of agricultural land with copper (Cu), due to the indiscriminate uses of fungicides and pesticides, and the discharge of industrial waste to the environment, poses a high threat for soil degradation and consequently food crop production. In this study, we combined morphological, physiological and biochemical assays to investigate the mechanisms underlying acetate-mediated Cu toxicity tolerance in lentil. Results demonstrated that high dose of Cu (3.0 mM CuSO₄. 5H₂O) reduced seedling growth and chlorophyll content, while augmenting Cu contents in both roots and shoots, and increasing oxidative damage in lentil plants through disruption of the antioxidant defense. Principle component analysis clearly indicated that Cu accumulation and increased oxidative damage were the key factors for Cu toxicity in lentil seedlings. However, acetate pretreatment reduced Cu accumulation in roots and shoots, increased proline content and improved the responses of antioxidant defense (e.g. increased catalase and glutathione-S-transferase activities, and improved action of glutathione-ascorbate metabolic pathway). As a result, excess Cu-induced oxidative damage was reduced, and seedling growth was improved under Cu stress conditions, indicating the role of acetate in alleviating Cu toxicity in lentil seedlings. Taken together, exogenous acetate application reduced Cu accumulation in lentil roots and shoots and mitigated oxidative damage by activating the antioxidant defense, which were the major determinants for alleviating Cu toxicity in lentil seedlings. Our findings provide mechanistic insights into the protective roles of acetate in mitigating Cu toxicity in lentil, and suggest that application of acetate could be a novel and economical strategy for the management of heavy metal toxicity and accumulation in crops.
显示更多 [+] 显示较少 [-]Impact of copper nanoparticles and ionic copper exposure on wheat (Triticum aestivum L.) root morphology and antioxidant response 全文
2018
Zhang, Zhenyan | Ke, Mingjing | Qu, Qian | Peijnenburg, W.J.G.M. | Lu, Tao | Zhang, Qi | Ye, Yizhi | Xu, Pengfei | Du, Benben | Sun, Liwei | Qian, Haifeng
Copper nanoparticles (nCu) are widely used in industry and in daily life, due to their unique physical, chemical, and biological properties. Few studies have focused on nCu phytotoxicity, especially with regard to toxicity mechanisms in crop plants. The present study examined the effect of 15.6 μM nCu exposure on the root morphology, physiology, and gene transcription levels of wheat (Triticum aestivum L.), a major crop cultivated worldwide. The results obtained were compared with the effects of exposing wheat to an equivalent molar concentration of ionic Cu (Cu²⁺ released from CuSO₄) and to control plants. The relative growth rate of roots decreased to approximately 60% and the formation of lateral roots was stimulated under nCu exposure, possibly due to the enhancement of nitrogen uptake and accumulation of auxin in lateral roots. The expression of four of the genes involved in the positive regulation of cell proliferation and negative regulation of programmed cell death decreased to 50% in the Cu²⁺ treatment compared to that of the control, while only one gene was down-regulated to about half of the control in nCu treatment. This explained the decreased root cell proliferation and higher extent of induced cell death in Cu²⁺- than in nCu-exposed plants. The increased methane dicarboxylic aldehyde accumulation (2.17-fold increase compared with the control) and decreased antioxidant enzyme activities (more than 50% decrease compared with the control) observed in the Cu²⁺ treatment in relation to the nCu treatment indicated higher oxidative stress in Cu²⁺- than in nCu-exposed plants. Antioxidant (e.g., proline) synthesis was pronouncedly induced by nCu to scavenge excess reactive oxygen species, alleviating phytotoxicity to wheat exposed to this form of Cu. Overall, oxidative stress and root growth inhibition were the main causes of nCu toxicity.
显示更多 [+] 显示较少 [-]The combined supplementation of melatonin and salicylic acid effectively detoxifies arsenic toxicity by modulating phytochelatins and nitrogen metabolism in pepper plants 全文
2022
Kaya, Cengiz | Sarıoglu, Ali | Ashraf, Muhammad | Alyemeni, Mohammed Nasser | Ahmad, Parvaiz
The main objective of the study was to assess if joint application of melatonin (MT, 0.1 mM) and salicylic acid (SA 0.5 mM) could improve tolerance of pepper plants to arsenic (As) as sodium hydrogen arsenate heptahydrate (0.05 mM). The imposition of arsenic stress led to accumulation of As in roots and leaves, and increased contents of leaf proline, phytochelatins, malondialdehyde (MDA) and H₂O₂, but it reduced plant biomass, chlorophylls (Chl), PSII maximum efficiency (Fv/Fm) and leaf water potential. Melatonin and SA applied jointly or alone enhanced nitrogen metabolism by triggering the activities of glutamate synthase, glutamine synthetase, and nitrite reductases and nitrate. In comparison with a single treatment of MT or SA, the joint treatment of MT and SA had better impact on enhancing growth and key biological events and decreasing tissue As content. This clearly shows a cooperative function of both agents in enhancing tolerance to As-toxicity in pepper plants.
显示更多 [+] 显示较少 [-]