细化搜索
结果 1-10 的 276
Studies on removal of Zinc and Chromium from aqueous solutions using water Hyacinth 全文
2015
Swarnalatha, K. | Radhakrishnan, Bindhu
Phytoremediation is an eco-friendly method for removal of pollutants, which can be relied upon as a sustainable technology, if implemented under optimum conditions of plant growth. The effectiveness of water hyacinth, a topical weed, for the removal of Zinc (Zn) and Chromium (Cr) ions from aqueous solutions has been presented in this article. The potential of this plant in removing metals by phytoremediation was explored under various environmental factors such as pH, salinity, metal concentrations, available nutrients, and so on. The efficiency of metal removal was observed by varying the different parameters. It was found that the maximum removal of metals occurred at a neutral pH, low amount of salinity, lower metal ion concentrations, and lack of nutrients. The stress induced in a plant by metal absorption was visible from the health and growth pattern of the plants. The stress on water hyacinth due to metals was also assessed, by observing the changes in its chlorophyll and protein content.
显示更多 [+] 显示较少 [-]Wastewater valorisation in an integrated multitrophic aquaculture system; assessing nutrient removal and biomass production by duckweed species 全文
2022
Paolacci, Simona | Stejskal, Vlastimil | Toner, Damien | Jansen, Marcel A.K.
The aquaculture industry is considered a key sector for the supply of high quality, nutritious food. However, growth of the aquaculture sector has been slow, particularly in Europe, and this is amongst others linked to concerns about environmental impacts of this industry. Integrated Multitrophic Aquaculture (IMTA) has been identified as an important technology to sustainably improve freshwater fish production. In IMTA, economically valuable extractive species feed on waste produced by other species, remediating wastewater, and minimising the environmental impact of aquaculture. This study presents quantitative information on the nitrogen and phosphorus removal efficiency of a duckweed-based, pilot, semi-commercial IMTA system. Duckweed species are free-floating freshwater species belonging to the family of Lemnaceae. The aim of this study was to test the potential of duckweed-based IMTA under realistic environmental conditions. Three different approaches were used to assess remediation capacity; 1) assessment of water quality pre and post treatment with duckweed showed that the system can remove 0.78 and 0.38 T y⁻¹ of Total Nitrogen (TN) and Total Phosphorus (TP), respectively 2) based on nitrogen and phosphorus content of newly grown duckweed biomass, it was shown that 1.71 and 0.22 T y⁻¹ of TN and TP can be removed, respectively 3) extrapolation based on laboratory established nitrogen and phosphorus uptake rates determined that 0.88 and 0.08 T y⁻¹ of TN and TP can be removed by the system. There is substantive agreement between the three assessments, and the study confirms that duckweed can maintain good quality water in an IMTA system, while yielding high protein content (21.84 ± 2.45%) biomass. The quantitative data on nitrogen and phosphorus removal inform the design of further IMTA systems, and especially create a scientific basis to determine the balance between aquaculture and extractive species.
显示更多 [+] 显示较少 [-]Safety of composts consisting of hydrothermally treated penicillin fermentation residue: Degradation products, antibiotic resistance genes and bacterial diversity 全文
2021
Ren, Jianjun | Deng, Liujie | Li, Chunyu | Dong, Liping | Li, Zhijie | Zhao, Jian | Huhetaoli, | Zhang, Jin | Niu, Dongze
Combining hydrothermal treatment and composting is an effective method to dispose of penicillin fermentation residue (PFR), but the safety and related mechanism are still unclear. In this study, penicillin solution was hydrothermally treated to decipher its degradation mechanism, and then hydrothermally treated PFR (HT-PFR) was mixed with bulking agents at ratios of 2:0 (CK), 2:1.5 (T1), and 2:5 (T2) to determine the absolute abundance of antibiotic resistance genes (ARGs) and the succession of bacterial community. Results showed that penicillin was degraded to several new compounds without the initial lactam structure after hydrothermal treatment. During composting, temperature and pH of the composts increased with the raising of HT-PFR proportion, except the pH at days 2. After 52 days of composting, the absolute copies of ARGs (blaTEM, blaCMY2, and blaSFO) and the relative abundance of bacteria related to pathogens were reduced significantly (P < 0.05). Especially, the total amount of ARGs in the samples of CK and T1 were decreased to equal level (around 5 log₁₀ copies/g), which indicated that more ARGs were degraded in the latter by the composting process. In the CK samples, Bacteroidetes and Proteobacteria accounted for ~69.8% of the total bacteria, but they were gradually replaced by Firmicutes with increasing proportions of HT-PFR, which can be caused by the high protein content in PFR. Consisting with bacterial community, more gram-positive bacteria were observed in T1 and T2, and most of them are related to manganese oxidation and chitinolysis. As composting proceeded, bacteria having symbiotic or pathogenic relationships with animals and plants were reduced, but those related to ureolysis and cellulolysis were enriched. Above all, hydrothermal treatment is effective in destroying the lactam structure of penicillin, which makes that most ARGs and pathogenic bacteria are eliminated in the subsequent composting.
显示更多 [+] 显示较少 [-]The mixture effects of bisphenol derivatives on estrogen receptor and androgen receptor 全文
2020
Park, Choa | Song, Heewon | Choi, Junyeong | Sim, Seunghye | Kojima, Hiroyuki | Park, Joonwoo | Iida, Mitsuru | Lee, Youngjoo
Bisphenol A (BPA) is a well-known for endocrine-disrupting chemical (EDC) and is one of the highest amounts of chemicals produced worldwide. Some countries restrict the use of BPA, which is widely used in the production of a variety products. Considering the toxicity and limitations on use of BPA, efforts are needed to find safer alternatives. Increasingly, bisphenol F (BPF) and bisphenol S (BPS) are alternatives of BPA, which is increasing their exposure levels in various environments. There are many ways to assess whether a chemical is an EDC. Here, we evaluated the endocrine-disrupting risks of the bisphenols by investigating their agonist and antagonist activities with the estrogen (ER), androgen (AR), and aryl hydrocarbon (AhR) receptors. Our results showed that BPA, BPS, and BPF (BPs) have estrogen agonist and androgen antagonist activities and decrease the ERα protein level. Interestingly, a mixture of the BPs had ER and anti-AR activity at lower concentrations than BPs alone. The activation of AhR was not a concentration-dependent effect of BPs, although it was increased significantly. In conclusion, BPs have estrogen agonist and androgen antagonist activities, and the effect of exposure to a BPs mixture differs from that of BPs alone.
显示更多 [+] 显示较少 [-]Increased temperature and lower resource quality exacerbate chloride toxicity to larval Lithobates sylvaticus (wood frog) 全文
2020
Green, Frank B. | Salice, Christopher J.
A chemical contaminant of growing concern to freshwater aquatic organisms, including many amphibians, is chloride ion. The salinization of freshwater ecosystems is likely caused, in part, by the application of massive amounts of road de-icing salts to roadways during winter months. The issue of freshwater salinization has become the subject of many toxicity studies and is often investigated in conjunction with other chemical stressors. However, few published studies attempt to investigate the interactions of elevated chloride concentration and increased temperature. Further, no studies have investigated the gap between the recommended feeding conditions typically used in standard toxicity tests and those that may exist in natural amphibian habitats. This study addressed the critical issues of elevated chloride, increased temperature, and variation in food quality. We conducted a 96-h acute toxicity test to investigate acute chloride toxicity as impacted by different diets, as well as a chronic toxicity test to investigate the impacts of chloride, temperature, and resource quality on the survival and development of larval Lithobates sylvaticus (wood frogs). Chloride LC₅₀s ± 1 SE were 3769.22 ± 589.05, 2133.00 ± 185.95, and 2644.69 ± 209.73 mg Cl⁻/L were for non-fed, low-protein diet, and high-protein diet, respectively. For the chronic toxicity study, elevated chloride decreased tadpole survival. Increased temperature, and lower resource quality, were found negatively impacted survival of tadpoles and altered time-to-metamorphosis. This study shows that environmentally relevant concentrations of chloride, temperatures, and the protein content of the diet all exert critical effects on larval wood frogs.
显示更多 [+] 显示较少 [-]Fluoride induced mitochondrial impairment and PINK1-mediated mitophagy in Leydig cells of mice: In vivo and in vitro studies 全文
2020
Liang, Zhen | Gao, Yan | He, Yuyang | Han, Yongli | Manthari, Ram Kumar | Tikka, Chiranjeevi | Chen, Chenkai | Wang, Jundong | Zhang, Jianhai
It is very important to explore the potential harm and underlying mechanism of fluoride due to the extensive distribution and the significant health risks of fluoride in environment. The objective of this study to investigate whether fluoride can induce mitochondrial impairment and mitophagy in testicular cells. For this, 40 male mice were randomly divided into four groups treated with 0, 0.6, 1.2, 2.4 mM NaF deionized water, respectively, for 90 days continuously. The results showed that mitophagy was triggered by F in testicular tissues, especially in the Leydig cells by transmission electron microscopy and mitophagy receptor PHB2 locations by immunofluorescence. Furthermore, TM3 Leydig cells line was employed and treated with 0, 0.125, 0.25, and 0.5 mM NaF for 24 h. The mitochondrial function indicators and mitophagy maker PHB2, COX IV and regulator PINK1 in transcript and protein levels in Leydig cells were examined by the methods of qRT-PCR, western blotting, and immunofluorescence co-localization. The results showed that fluoride decreased the mitochondrial membrane potential with a concomitant increase in the number of lysosomes. Meanwhile, fluoride exposure also increased the expressions of PINK1 and PHB2 in TM3 Leydig cells. These results revealed that fluoride could induce mitochondrial impairment and excessive PINK1/Parkin-mediated mitophagy in testicular cells, especially in Leydig cells, which could contribute to the elucidation of the mechanisms of F-induced male reproductive toxicity.
显示更多 [+] 显示较少 [-]Long-term exposure of high concentration heavy metals induced toxicity, fatality, and gut microbial dysbiosis in common carp, Cyprinus carpio 全文
2020
Heavy metals (HMs) in an aquatic environment mainly affects fish, and thus, fish are convenient pollution bio-indicators. In this study, the toxic effects of HM mixture (chromium (Cr), cadmium (Cd), copper (Cu)) in 0 mg/L to 3.2 mg/L concentration range was investigated in Cyprinus carpio (28 days). HM accumulation, histopathology, oxidative stress, and gut microbial changes were evaluated. HMs accumulated in the order of Cr > Cu > Cd, primarily in the kidneys and finally scales. Reactive oxygen species generation increased in all exposure groups up to day 14, with maximum generation at 3.2 mg/L mixture, which later decreased on day 28 in all. Malondialdehydeand and superoxide dismutase levels increased from day 7 to 28 with increased HM concentrations, while total protein showed an inverse trend. Gill histopathology showed major changes such as uplifted and disintegrated primary lamella, and secondary lamella shortening. The kidneys were characterized by glomerular necrosis, Bowman’s capsule expansion, and tubular space dilatation. Proteobacteria and Firmicutes abundance increased up to 59.4% and 99.16% in 0.8 mg/L and 3.2 mg/L treatment groups, respectively. This study provided a better understanding on the physiology and gut microbiota alteration in C. carpio under multiple HM stress.
显示更多 [+] 显示较少 [-]Ecotoxicity of trace elements to chicken GALLUS gallus domesticus exposed to a gradient of polymetallic-polluted sites 全文
2020
Kribi-Boukhris, Sameh EL. | Boughattas, Iteb | Zitouni, Nesrine | Helaoui, Sondes | Sappin-Didier, Valérie | Coriou, Cécile | Bussiere, Sylvie | Banni, Mohamed
Ecotoxicity of trace elements to chicken GALLUS gallus domesticus exposed to a gradient of polymetallic-polluted sites 全文
2020
Kribi-Boukhris, Sameh EL. | Boughattas, Iteb | Zitouni, Nesrine | Helaoui, Sondes | Sappin-Didier, Valérie | Coriou, Cécile | Bussiere, Sylvie | Banni, Mohamed
Mining activity may cause heavy metal accumulation, which threatens human and animal health by their long-term persistence in the environment. This study aims to assess the impact of polymetallic pollution on chicken (Gallus domesticus) from old lead mining sites in northeast of Tunisia: Jebel Ressas (JR). Samples of soil and chickens were collected from five sites being ranked along a gradient of heavy metal contamination. Heavy metal loads were evaluated in soil samples and in chicken liver and kidney. Biochemical evaluation of oxidative stress parameters termed as Catalase (CAT), Glutathione-S-Transferase (GST), and Malondialdehydes (MDA) accumulation was monitored. Metallothionein protein level was assessed as a specific response to heavy metals. DNA alteration was achieved using MNi frequency in the investigated tissues. Finally, the evaluation of gene expression levels of CAT, GST, mt1, mt4, P53, bcl2, caspase3 and DNA-ligase was performed. Our data showed the highest loads of Cd, Cu, Zn and Pb in tissues of animals from site 3, being more pronounced in kidney. Biochemical data suggested a significant increase in antioxidant enzymes activities in all sites respect to control except in site 3 were CAT and GST were inhibited. DNA alteration was observed in all tissues being very pronounced in animals from site 3. Overall, transcriptomic data showed that genes involved in apoptosis were up-regulated in animals exposed to the most contaminated soils. Our data suggest that chicken and selected biomarkers offer a suitable model for biomonitoring assessment of heavy metals transfer through the food web in mining sites. Finally, the obtained results of heavy metals accumulation and related alterations should be carefully considered in view of the controversial relationship between distribution and toxicology of contaminants in exposed organisms.
显示更多 [+] 显示较少 [-]High carbohydrate diet partially protects Nile tilapia (Oreochromis niloticus) from oxytetracycline-induced side effects 全文
2020
Limbu, Samwel Mchele | Zhang, Han | Luo, Yuan | Chen, Li-Qiao | Zhang, Meiling | Du, Zhen-Yu
Antibiotics used in global aquaculture production cause various side effects, which impair fish health. However, the use of dietary composition such as carbohydrate, which is one of the dominant components in fish diets to attenuate the side effects induced by antibiotics, remains unclear. We determined the ability of high carbohydrate diet to protect Nile tilapia (Oreochromis niloticus) from oxytetracycline-induced side effects. Triplicate groups of thirty O. niloticus (9.50 ± 0.08 g) were fed on medium carbohydrate (MC; 335 g/kg) and high carbohydrate (HC; 455 g/kg) diets without and with 2.00 g/kg diet of oxytetracycline (80 mg/kg body weight/day) hereafter, MCO and HCO for 35 days. Thereafter, we assessed growth performance, hepatic nutrients composition and metabolism, microbiota abundance, immunity, oxidative and cellular stress, hepatotoxicity, lipid peroxidation and apoptosis. To understand the possible mechanism of carbohydrate protection on oxytetracycline, we assessed the binding effects and efficiencies of mixtures of medium and high starch with oxytetracycline as well as the MCO and HCO diets. The O. niloticus fed on the MCO and HCO diets had lower growth rate, nutrients utilization and survival rate than those fed on the MC and HC diets, respectively. Dietary HCO increased hepatosomatic index and hepatic protein content of O. niloticus than MCO diet. The O. niloticus fed on the HCO diet had lower mRNA expression of genes related to protein, glycogen and lipid metabolism compared to those fed on the MCO diet. Feeding O. niloticus on the HCO diet increased innate immunity and reduced pathogenic bacteria, pro-inflammation, hepatotoxicity, cellular stress and apoptosis than the MCO diet. The high starch with oxytetracycline and HCO diet had higher-oxytetracycline binding effects and efficiencies than the medium starch with oxytetracyline and MCO diet, respectively. Our study demonstrates that, high carbohydrate partially protects O. niloticus from oxytetracycline-induced side effects by binding the antibiotic. Incorporating high carbohydrate in diet formulation for omnivorous fish species alleviates some of the side effects caused by antibiotics.
显示更多 [+] 显示较少 [-]Activation of autophagy inhibits cadmium-triggered apoptosis in human placental trophoblasts and mouse placenta 全文
2019
Zhu, Hua-Long | Xu, Xiao-Feng | Shi, Xue-Ting | Feng, Yu-Jie | Xiong, Yong-Wei | Nan, Yuan | Zhang, Cheng | Gao, Lan | Chen, Yuan-Hua | Xu, De-Xiang | Wang, Hua
Cadmium (Cd), a ubiquitous environmental pollutant, is known to impair placental development. However, the underlying mechanisms remain unclear. The present study used in vivo and in vitro models to investigate the effects of Cd on apoptosis and autophagy in placental trophoblasts and its mechanism. Pregnant mice were exposed to CdCl₂ (4.5 mg/kg) on gestational day (GD) 9. Human JEG-3 cells were exposed to CdCl₂ (0–40 μM) for different time points. Gestational Cd exposure obviously lowered the weight and diameter of mouse placentas. Number of TUNEL-positive cells was markedly elevated in Cd-administered mouse placentas and JEG-3 cells. Correspondingly, Cd significantly up-regulated cleaved caspase-3 protein level, a key indicator of apoptosis, in murine placentas and JEG-3 cells. Simultaneously, Cd also triggered autophagy, as determined by an elevation of LC3B-II and p62 protein, and accumulation of LC3-positive puncta, in placental trophoblasts. Chloroquine an autophagy inhibitor, obviously aggravated Cd-induced apoptosis in JEG-3 cells. By contrast, rapamycin, a specific autophagy inducer, significantly alleviated Cd-triggered apoptosis in JEG-3 cells. Mechanistically, autophagy inhibited Cd-induced apoptosis mainly via degrading caspase-9. Co-localizations of p62, a classical autophagic receptor, and caspase-9 were observed in Cd-stimulated human JEG-3 cells. Moreover, p62 siRNAs pretreatment markedly blocked the degradation of caspase 9 proteins via Cd-activated autophagy in JEG-3 cells. Collectively, our data suggest that activation of autophagy inhibits Cd-induced apoptosis via p62-mediated caspase-9 degradation in placental trophoblasts. These findings provide a new mechanistic insight into Cd-induced impairments of placental and fetal development.
显示更多 [+] 显示较少 [-]