细化搜索
结果 1-10 的 386
Mechanisms of Trace Metal Elements Removal from Water using Low-Cost Biochar Adsorbents: A mini review 全文
2024
Srivastav, Arun Lal | Rani, Lata | Sharda, Prakriti | Sharma, Ajay
Trace metal elements are toxic to the environment and human health and can be removed from water through adsorption. Development of low-cost adsorbents would always been a matter of achievement of every adsorption study as usually many adsorbents were found to be expensive in nature. In this regard, biochar adsorbents gained significant attention due to high adsorption capacity, low-cost and environmental sustainability. Pyrolysis is used to produce biochar adsorbents at varying temperature ranged from 300°C-700°C. The adsorption capacities of palm fiber biochar adsorbents are remarkable which was found around ~198 mg/g for cadmium removal. However, bamboo-based biochar had 868 mg/g of adsorption capacity for arsenate removal. This review aims to provide the current discusses the sources and impacts of trace metal elements in water along with properties of biochar including its composition, surface area, pore structure, and surface functional groups. Further, various types of biomasses have also been mentioned for producing biochar such as agricultural wastes, food wastes, forestry residues, etc. The paper also discusses the different types of mechanisms involved in the adsorption of heavy metal biochar adsorbents like electrostatic attraction, ion exchange, surface complexation etc.
显示更多 [+] 显示较少 [-]Characterization and Application of Biochar from spent fermentation sludge of coir wastes in removing Malachite green from effluent water 全文
2022
Sudhakaran, Ajith | Rajan, Revathy | Ravindranath, Anita
Lignin rich solid residues after saccharification during the production of ethanol from lignocellulosic substrates are major concern during past times. These solid residues left after the saccharification of Coir pith and Bit fiber waste are pyrolysed at 350 oC to yield biochar, which has been characterized and its potential for removal of Malachite Green, a dye present in the effluents from coir product manufacturing units are studied. FTIR and XRD spectra revealed the diverse functional groups present on the surface of biochar. SEM images showed the porous structure of the biochar. A maximum dye removal efficiency of 99.5% was achieved using Coir Pith Biochar (1 %) within 24 hours of treatment at a dye concentration of 100 mg/l. The removal efficiency was 99.4 % using Bit Fiber Biochar (0.8 %) in the same treatment period. The efficiency of removal was enhanced on adjusting the pH to 4 at which the dye removal of 99.6 % and 99.7 % was achieved using Bit fiber biochar and Coir pith biochar respectively. The residence time was significantly reduced to 2 and 4 hours respectively for bit fiber and coir pith biochar at pH 4 and hence the produced biochars are cost effective adsorbents for removal of dyeing effluents in wastewater. The adsorption fits into pseudo-second order kinetics and is well described by langmuir isotherm model. This would also facilitate the sustainable use of spent solid substrates left after lignocellulosic ethanol production in a more economical way.
显示更多 [+] 显示较少 [-]Microwave-responsive SiC foam@zeolite core-shell structured catalyst for catalytic pyrolysis of plastics 全文
2022
Chen, Zhaohui | Monzavi, Mohammad | Latifi, Mohammad | Samih, Said | Chaouki, J.
Catalytic pyrolysis is a promising chemical recycling technology to supplement mechanical recycling since plastics can be broken down into monomers or converted to the required fuels and chemicals. In this study, a microwave (MW) -responsive SiC foam@zeoltie core-shell structured catalyst was proposed for the catalytic pyrolysis of polyolefins. Under microwave irradiation, the SiC foam core works as both microwave adsorber and catalyst support, thus concentrating the generated heat energy on the ZSM-5 zeolite shell, where the catalytic reaction takes place. SiC foam with an open cellular structure can also improve the global transport of mass and heat during plastics pyrolysis. In this work, the effects of the SiO₂/Al₂O₃ ratio and alkaline treatment of ZSM-5 zeolite coated SiC foam under MW irradiation on the variations in product distribution from low-density polyethylene (LDPE) pyrolysis were investigated at 450 °C. The results indicated that the appropriate acidity and pore structure were crucial to upgrading gas and liquid products. Particularly, the creation of a mesoporous structure in ZSM-5 zeolite via alkaline treatment could improve the diffusion of large molecules and products, thus significantly increasing the selectivity of high-valued light olefins and aromatics while inhibiting the formation of unwanted alkanes, which are expected in the chemical industry. Concretely, the concentration of olefins in gas increased to 51.0 vol% for ZSM-5(50)-0.25AT, and 65.6 vol% for ZSM-5 (50)-0.50AT, compared with 45.2 vol% for the parent ZSM-5(50). The relative concentration of aromatics in liquid decreased from 96.6% for ZSM-5(50) to 75.9% for ZSM-5(50)-0.25AT, and 71.1% for ZSM-5(50)-0.50AT. Given the respective yield of gas and liquid, the total selectivity of C2–C4 olefins and aromatics for mesoporous ZSM-5 zeolites could reach 58.6–64.9% during LDPE pyrolysis, which were higher than that for the parent ZSM-5 zeolite.
显示更多 [+] 显示较少 [-]Adsorption performance and mechanism of cationic and anionic dyes by KOH activated biochar derived from medical waste pyrolysis 全文
2022
Ullah, Fahim | Ji, Guozhao | Irfan, Muhammad | Gao, Yuan | Shafiq, Farishta | Sun, Ye | Ain, Qurat Ul | Li, Aimin
The massive generation of medical waste (MW) results in a series of environmental, social, and ecological problems. Pyrolysis is one such approach that has attracted more attention because of the production of value-added products with lesser environmental risk. In this study, the activated biochar (ABC600) was obtained from MW pyrolysis and activated with KOH. The adsorption mechanism of activated biochar on cationic (methylene blue) and anionic (reactive yellow) dyes were studied. The physicochemical characterization of biochar showed that increasing pyrolysis temperature and KOH activation resulted in increased surface area, a rough surface with a clear porous structure, and sufficient functional groups. MB and RYD-145 adsorption on ABC600 was more consistent with Langmuir isotherm (R² ≥ 0.996) and pseudo-second-order kinetics (R² ≥ 0.998), indicating chemisorption with monolayer characteristics. The Langmuir model fitting demonstrated that MB and RYD-145 had maximum uptake capacities of 922.2 and 343.4 mg⋅g⁻¹. The thermodynamics study of both dyes showed a positive change in enthalpy (ΔH°) and entropy (ΔS°), revealing the endothermic adsorption behavior and randomness in dye molecule arrangement on activated-biochar/solution surface. The activated biochar has excellent adsorption potential for cationic and anionic dyes; hence, it can be considered an economical and efficient adsorbent.
显示更多 [+] 显示较少 [-]Effect of carrier gas during pyrolysis on the persistence and bioavailability of polycyclic aromatic hydrocarbons in biochar-amended soil 全文
2022
Godlewska, Paulina | Oleszczuk, Patryk
In this study the persistence (based on extractable, Cₜₒₜ) and bioavailability (based on freely dissolved content, Cfᵣₑₑ) of polycyclic aromatic hydrocarbons (PAHs) in biochar-amended soil was investigated. Biochar produced at 500 or 700 °C from sewage sludge (BC) or sewage sludge and willow (W) mixture (BCW) in an atmosphere of nitrogen (N₂) or carbon dioxide (CO₂) was evaluated. The biochars were applied to the real soil (podzolic loamy sand) at a dose of 2% (w/w). The content of Cₜₒₜ and Cfᵣₑₑ PAHs was monitored for 180 days. The biochar production conditions determined the Cₜₒₜ and Cfᵣₑₑ PAHs in the soil. A change of carrier gas from N₂ to CO₂ caused an increase in Cₜₒₜ PAH losses in the soil from 19 to 75% for the biochar produced from SL and from 49 to 206% for the co-pyrolyzed biochar. As regards Cfᵣₑₑ PAHs, the change from N₂ to CO₂ increased the losses of Cfᵣₑₑ PAHs only for the biochar derived from SL at a temperature of 500 °C (by 21%). In the soil with the other biochars (produced at 700 °C from SL as well as at 500 and 700 °C from SL/W), the Cfᵣₑₑ increased from 17 to 26% compared to the same biochars produced in an atmosphere of N₂.
显示更多 [+] 显示较少 [-]Phase transformation-driven persulfate activation by coupled Fe/N–biochar for bisphenol a degradation: Pyrolysis temperature-dependent catalytic mechanisms and effect of water matrix components 全文
2022
Wang, Yujiao | Wang, Li | Cao, Yuqing | Bai, Shanshan | Ma, Fang
Fe–N co-doped biochar is recently an emerging carbocatalyst for persulfate activation in situ chemical oxidation (ISCO). However, the involved catalytic mechanisms remain controversial and distinct effects of coexisting water components are still not very clear. Herein, we reported a novel N-doped biochar-coupled crystallized Fe phases composite (Fe@N-BC₈₀₀) as efficient and low-cost peroxydisulfate (PDS) activators to degrade bisphenol A (BPA), and the underlying influencing mechanism of coexisting inorganic anions (IA) and humic constituent. Due to the formation of graphitized nanosheets with high defects (AI index>0.5, ID/IG = 1.02), Fe@N-BC₈₀₀ exhibited 2.039, 5.536, 8.646, and 23.154-fold higher PDS catalytic activity than that of Fe@N-BC₆₀₀, Fe@N-BC₄₀₀, N-BC, BC. Unlike radical pathway driven by carbonyl group and pyrrolic N of low/mid-temperature Fe@N–BCs. The defective graphitized nanosheets and Fe-Nx acted separately as electron transfer and radical pathway active sites of Fe@N-BC₈₀₀, where π-π sorption assisted with pyrrolic N and pore-filling facilitated BPA degradation. The strong inhibitory effects of PO₄³⁻ and NO₂⁻ were ascribed to competitive adsorption of phosphate (61.11 mg g⁻¹) and nitrate (23.99 mg g⁻¹) on Fe@N-BC₈₀₀ via electrostatic attraction and hydrogen bonding. In contrast, HA competed for the pyrrolic-N site and hindered electron delivery. Moreover, BPA oxidation pathways initiated by secondary free radicals were proposed. The study facilitates a thorough understanding of the intrinsic properties of designed biochar and contributes new insights into the fate of degradation byproducts formed from ISCO treatment of micropollutants.
显示更多 [+] 显示较少 [-]An iron-biochar composite from co-pyrolysis of incinerated sewage sludge ash and peanut shell for arsenic removal: Role of silica 全文
2022
Wang, Qiming | Li, Jiang-shan | Poon, C. S. (Chi-sun)
Modification of biochar by low-cost iron sources has gained increasing attention to improve pollutants removal performance and reduce production costs compared to conventional chemical modifications. While such iron sources generally have complex compositions, their effects on properties of the iron-biochar composite are not well investigated. This study produced an iron-biochar (RBC) composite from co-pyrolysis of incinerated sewage sludge ash (ISSA) and peanut shell, and examined the role of silica with widespread existence in ISSA and other low-cost iron sources on properties of the iron-biochar composite relevant to As(III)/As(V) removal. Silica was found to react with iron during the pyrolysis process at 850 °C and formed iron silicon at the expense of producing zero valent iron and Fe₃O₄ which resulted in a poorer removal efficacy for As(III) and As(V) compared to the iron-biochar (FBC) made from pure Fe₂O₃ and peanut shell. Moreover, a high leaching of reactive silica from RBC was observed which affected the formation of corrosion products of ZVI and competed with arsenic for active adsorption sites. Despite this, RBC still exhibited a maximum adsorption capacity of 17.44 and 57.56 mg/g towards As(III) and As(V) respectively at pH 3.0. Overall, this study provides an interesting insight into upcycling ISSA into useful media for sorptive removal of arsenic from aqueous solutions.
显示更多 [+] 显示较少 [-]H3PO4 activation mediated the iron phase transformation and enhanced the removal of bisphenol A on iron carbide-loaded activated biochar 全文
2022
Zhao, Nan | Liu, Kunyuan | He, Chao | Zhao, Dongye | Zhu, Ling | Zhao, Chuanfang | Zhang, Weihua | Oh, Wen-Da | Zhang, Weixian | Qiu, Rongliang
Zero valent iron-loaded biochar (Fe⁰-BC) has shown promise for the removal of various organic pollutants, but is restricted by reduced specific surface area, low utilization efficiency and limited production of reactive oxygen species (ROS). In this study, iron carbide-loaded activated biochar (Fe₃C-AB) with a high surface area was synthesized through the pyrolysis of H₃PO₄ activated biochar with Fe(NO₃)₃, tested for removing bisphenol A (BPA) and elucidated the adsorption and degradation mechanisms. As a result, H₃PO₄ activated biochar was beneficial for the transformation of Fe⁰ to Fe₃C. Fe₃C-AB exhibited a significantly higher removal rate and removal capacity for BPA than that of Fe⁰-BC within a wide pH range of 5.0–11.0, and its performance was maintained even under extremely high salinity and different water sources. Moreover, X-ray photoelectron spectra and density functional theory calculations confirmed that hydrogen bonds were formed between the COOH groups and BPA. ¹O₂ was the major reactive species, constituting 37.0% of the removal efficiency in the degradation of BPA by Fe₃C-AB. Density functional reactivity theory showed that degradation pathway 2 of BPA was preferentially attacked by ROS. Thus, Fe₃C-AB with low cost and excellent recycling performance could be an alternative candidate for the efficient removal of contaminants.
显示更多 [+] 显示较少 [-]Mechanistic insight into adsorptive removal of ionic NOR and nonionic DEP organic contaminates by clay-biochar composites 全文
2022
Jing, Fanqi | Guan, Junjie | Tang, Wei | Chen, Jiawei
The synthesis of clay-biochar composite has been recognized as an effective way to enhance the removal of pollutants. The interaction between clay mineral and biomass during thermal pyrolysis and the sorption capacity for ionic/nonionic organic containments have not been elaborated. In this study, two types of biochar were obtained from pyrolytic carbonization of the cellulosic-rich corn straw (C) and lignin-rich pine wood (P) at 500 or 700 °C. Typical clay minerals kaolinite and montmorillonite were selected to prepare clay-biochar composite. The results showed that the addition of clay mineral could strengthen dehydration reaction of corn straw biomass and reinforce its carbon structure. Montmorillonite-biochar composite owned more CC functional groups and porous structure than kaolinite-biochar composite. The addition of clay minerals could promote electrostatic attraction of ionic formed norfloxacin (NOR) on clay-pine wood biochar. However, the sorption capacity of nonionic diethyl phthalate (DEP) adsorption on clay-corn straw biochar decreased, owing to that clay increased the compactness of the biochar carbon structure, thus inhabited hydrophobic partition of nonionic organic compounds on disordered carbon fraction. The results from this study provide insights into the suitable contaminated site remediation by clay-biochar composite.
显示更多 [+] 显示较少 [-]Pinecone-derived magnetic porous hydrochar co-activated by KHCO3 and K2FeO4 for Cr(VI) and anthracene removal from water 全文
2022
Qu, Jianhua | Liu, Yang | Meng, Jiao | Bi, Fuxuan | Ma, Shouyi | Zhang, Guangshan | Wang, Yifan | Tao, Yue | Zhao, Jiang | Zhang, Ying
Herein, magnetic porous pinecone-derived hydrochar (MPHCMW) co-activated by KHCO₃ and K₂FeO₄ through one-step microwave-assisted pyrolysis was innovatively synthesized for hexavalent chromium (Cr(VI)) and anthracene (ANT) removal from water. The analyses of characterization consequences and co-activation mechanisms not merely proved the high specific surface area (703.97 m²/g) and remarkable microporous structures of MPHCMW caused by the synergistic chemical activation of KHCO₃ and K₂FeO₄, but also testified successful loading of Fe⁰ and Fe₃O₄ on MPHCMW by the process of carbothermal reduction between K₂FeO₄ and carbon matrix of hydrochar. The resultant MPHCMW possessed pH-dependence for Cr(VI), while adsorption for ANT was hardly impacted by the pH of solution. Moreover, the adsorption processes of MPHCMW could attain equilibrium within 60 min for Cr(VI) and 30 min for ANT with multiple kinetics, and the corresponding adsorption capacity for Cr(VI) and ANT was 128.15 and 60.70 mg/g, respectively. Additionally, the adsorption percentages of MPBCMW for Cr(VI)/ANT was maintained at 87.87/82.64% after three times of adsorption-desorption cycles. Furthermore, pore filling, complexation, electrostatic interaction, reduction and ion exchange were testified to enhance the removal of Cr(VI), while the ANT removal was achieved via π-π stacking, complexation, pore filling and hydrogen bonding force.
显示更多 [+] 显示较少 [-]