细化搜索
结果 1-10 的 37
Leaf morphology and gas exchange in holm oak (Quercus ilex L.) trees in different environments
2002
Lakso, K. (University of Oulu, (Finland). Department of Biology) | Paoletti, E. | Huttunen, S.
Two holm oak (Quercus ilex L.) sites in Tuscany, Central Italy, were studied in July 2000. Leaf morphological characteristics (area, dry weight, specific dry weight, water content, epicuticular wax amount, stomatal density) and leaf fluorescence were measured. Ozone flux into the leaves was calculated on a stomatal conductance basis. Among the measured parameters, only stomatal density and wax amount significantly differed between the sites. This response might indicate an adaptation to air pollutants, of which tropospheric ozone might be of the greatest importance
显示更多 [+] 显示较少 [-]Exploring new strategies for ozone-risk assessment: A dynamic-threshold case study
2021
Conte, A. | Otu-Larbi, F. | Alivernini, A. | Hoshika, Y. | Paoletti, E. | Ashworth, K. | Fares, S.
Tropospheric ozone is a dangerous atmospheric pollutant for forest ecosystems when it penetrates stomata. Thresholds for ozone-risk assessment are based on accumulated stomatal ozone fluxes such as the Phytotoxic Ozone Dose (POD). In order to identify the effect of ozone on a Holm oak forest in central Italy, four flux-based ozone impact response functions were implemented and tested in a multi-layer canopy model AIRTREE and evaluated against Gross Primary Productivity (GPP) obtained from observations of Eddy Covariance fluxes of CO₂. To evaluate if a clear phytotoxic threshold exists and if it changes during the year, six different detoxifying thresholds ranging between 0 and 5 nmol O₃ m⁻² s⁻¹ were tested.The use of species-specific rather than more general response functions based on plant functional types (PFT) increased model accuracy (RMSE reduced by up to 8.5%). In the case of linear response functions, a threshold of 1 nmol m⁻² s⁻² produced the best results for simulations of the whole year, although the tolerance to ozone changed seasonally, with higher tolerance (5 nmol m⁻² s⁻¹ or no ozone impact) for Winter and Spring and lower thresholds in Summer and Fall (0–1 nmol m⁻² s⁻¹). A “dynamic threshold” obtained by extracting the best daily threshold values from a range of different simulations helped reduce model overestimation of GPP by 213 g C m⁻² y⁻¹ and reduce RMSE up to 7.7%. Finally, a nonlinear ozone correction based on manipulative experiments produced the best results when no detoxifying threshold was applied (0 nmol O₃ m⁻² s⁻¹), suggesting that nonlinear functions fully account for ozone detoxification. The evidence of seasonal changes in ozone tolerance points to the need for seasonal thresholds to predict ozone damage and highlights the importance of performing more species-specific manipulative experiments to derive response functions for a broad range of plant species.
显示更多 [+] 显示较少 [-]Acute effects of PAH contamination on microbial community of different forest soils
2020
Picariello, Enrica | Baldantoni, Daniela | De Nicola, Flavia
Polycyclic aromatic hydrocarbons (PAHs) are hazardous organic compounds with mutagenic, genotoxic and carcinogenic properties. Although PAHs in soil can cause toxicity to microorganisms, the microbial community is able to degrade these compounds. For this reason, it is important to study acute and short-term effects of PAH contamination on soil microbial community, also to shed light on its possible exploitation in soil restoration.The effects of acute PAH contamination on the structure and metabolic activity of microbial communities in three forest (beech, holm oak, black pine) soils were studied. The soils were spiked with phenanthrene, pyrene or benzo[a]pyrene and incubated in experimental mesocosms, under controlled conditions. Enzymatic activities (laccase, total peroxidase and hydrolase), as well as microbial biomass and community structure (through phospholipid fatty acid and ergosterol analyses), were evaluated in the three soil systems 4 days after contamination and compared to no-spiked soils. In soil under holm oak, there was a stimulation of Gram+ bacteria after contamination with all the 3 PAHs, whereas in soil under pine, pyrene and phenanthrene additions mainly stimulated fungi and actinomycetes.
显示更多 [+] 显示较少 [-]Joining empirical and modelling approaches to estimate dry deposition of nitrogen in Mediterranean forests
2018
García-Gómez, Héctor | Izquieta-Rojano, Sheila | Aguillaume, Laura | González-Fernández, Ignacio | Valiño, Fernando | Elustondo, David | Santamaría, Jesús M. | Àvila, Anna | Bytnerowicz, Andrzej | Bermejo, Victoria | Alonso, Rocío
In Mediterranean areas, dry deposition is a major component of the total atmospheric N input to natural habitats, particularly to forest ecosystems. An innovative approach, combining the empirical inferential method (EIM) for surface deposition of NO₃⁻ and NH₄⁺ with stomatal uptake of NH₃, HNO₃ and NO₂ derived from the DO₃SE (Deposition of Ozone and Stomatal Exchange) model, was used to estimate total dry deposition of inorganic N air pollutants in four holm oak forests under Mediterranean conditions in Spain. The estimated total deposition varied among the sites and matched the geographical patterns previously found in model estimates: higher deposition was determined at the northern site (28.9 kg N ha⁻¹ year⁻¹) and at the northeastern sites (17.8 and 12.5 kg N ha⁻¹ year⁻¹) than at the central-Spain site (9.4 kg N ha⁻¹ year⁻¹). On average, the estimated dry deposition of atmospheric N represented 77% ± 2% of the total deposition of N, of which surface deposition of gaseous and particulate atmospheric N averaged 10.0 ± 2.9 kg N ha⁻¹ year⁻¹ for the four sites (58% of the total deposition), and stomatal deposition of N gases averaged 3.3 ± 0.8 kg N ha⁻¹ year⁻¹ (19% of the total deposition). Deposition of atmospheric inorganic N was dominated by the surface deposition of oxidized N in all the forests (means of 54% and 42% of the dry and total deposition, respectively). The relative contribution of NO₂ to dry deposition averaged from 19% in the peri-urban forests to 11% in the most natural site. During the monitoring period, the empirical critical loads provisionally proposed for ecosystem protection (10–20 kg N ha⁻¹ year⁻¹) was exceeded in three of the four studied forests.
显示更多 [+] 显示较少 [-]Holm Oak (Quercus ilex L.) canopy as interceptor of airborne trace elements and their accumulation in the litter and topsoil
2013
Fantozzi, Federica | Monaci, Fabrizio | Blanusa, Tijana | Bargagli, Roberto
We investigated the role of urban Holm Oak (Quercus ilex L.) trees as an airborne metal accumulators and metals' environmental fate. Analyses confirmed Pb, Cd, Cu and Zn as a main contaminants in Siena's urban environment; only Pb concentrations decreased significantly compared to earlier surveys. Additionally, we determined chemical composition of tree leaves, litter and topsoil (underneath/outside tree crown) in urban and extra-urban oak stands. Most notably, litter in urban samples collected outside the canopy had significantly lower concentrations of organic matter and higher concentrations of Pb, Cu, Cd and Zn than litter collected underneath the canopy. There was a greater metals' accumulation in topsoil, in samples collected under the tree canopy and especially near the trunk (‘stemflow area’). Thus, in urban ecosystems the Holm Oak stands likely increase the soil capability to bind metals.
显示更多 [+] 显示较少 [-]Responses of evergreen and deciduous Quercus species to enhanced ozone levels
2011
Calatayud, Vicent | Cerveró, Júlia | Calvo, Esperanza | García Breijo, Francisco José | Reig-Armiñana, José | Sanz, María José
Plants of one evergreen oak (Quercus ilex) and three deciduous oaks (Q. faginea, with small leaves; Q. pyrenaica and Q. robur, with large leaves) were exposed both to filtered air and to enhanced ozone levels in Open-Top Chambers. Q. faginea and Q. pyrenaica were studied for the first time. Based on visible injury, gas exchange, chlorophyll content and biomass responses, Q. pyrenaica was the most sensitive species, and Q. ilex was the most tolerant, followed by Q. faginea. Functional leaf traits of the species were related to differences in sensitivity, while accumulated ozone flux via stomata (POD₁.₆) partly contributed to the observed differences. For risk assessment of Mediterranean vegetation, the diversity of responses detected in this study should be taken into account, applying appropriate critical levels.
显示更多 [+] 显示较少 [-]Photosynthetic responses to elevated CO2 and O3 in Quercus ilex leaves at a natural CO2 spring
2007
Paoletti, E. | Seufert, G. | Della Rocca, G. | Thomsen, H.
Photosynthetic stimulation and stomatal conductance (Gs) depression in Quercus ilex leaves at a CO2 spring suggested no down-regulation. The insensitivity of Gs to a CO2 increase (from ambient 1500 to 2000 μmol mol-1) suggested stomatal acclimation. Both responses are likely adaptations to the special environment of CO2 springs. At the CO2-enriched site, not at the control site, photosynthesis decreased 9% in leaves exposed to 2x ambient O3 concentrations in branch enclosures, compared to controls in charcoal-filtered air. The stomatal density reduction at high CO2 was one-third lower than the concomitant Gs reduction, so that the O3 uptake per single stoma was lower than at ambient CO2. No significant variation in monoterpene emission was measured. Higher trichome and mesophyll density were recorded at the CO2-enriched site, accounting for lower O3 sensitivity. A long-term exposure to H2S, reflected by higher foliar S-content, and CO2 might depress the antioxidant capacity of leaves close to the vent and increase their O3 sensitivity. Very high CO2 concentrations did not compensate for the effects of O3 on holm oak photosynthesis.
显示更多 [+] 显示较少 [-]Drought changes the dynamics of trace element accumulation in a Mediterranean Quercus ilex forest
2007
Sardans, J. | Penuelas, J.
We conducted a field drought manipulation experiment in an evergreen oak Mediterranean forest from 1999 to 2005 to investigate the effects of the increased drought predicted for the next decades on the accumulation of trace elements that can be toxic for animals, in stand biomass, litter and soil. Drought increased concentrations of As, Cd, Ni, Pb and Cr in roots of the dominant tree species, Quercus ilex, and leaf Cd concentrations in Arbutus unedo and of Phillyrea latifolia codominant shrubs. The increased concentration of As and Cd can aggravate the toxic capacity of those two elements, which are already next or within the levels that have been shown to be toxic for herbivores. The study also showed a great reduction in Pb biomass content (100-135 g ha-1) during the studied period (1999-2005) showing the effectiveness of the law that prohibited leaded fuel after 2001. The results also indicate that drought increases the exportation of some trace elements to continental waters. Drought increased biomass concentrations of As and Cd and favors exportation of some trace elements to continental waters in a Mediterranean forest.
显示更多 [+] 显示较少 [-]Assessing the risk caused by ground level ozone to European forest trees: A case study in pine, beech and oak across different climate regions
2007
Emberson, L.D. | Buker, P. | Ashmore, M.R.
Two different indices have been proposed for estimation of the risk caused to forest trees across Europe by ground-level ozone, (i) the concentration based AOT40 index (Accumulated Over a Threshold of 40 ppb) and (ii) the recently developed flux based AFstY index (Accumulated stomatal Flux above a flux threshold Y). This paper compares the AOT40 and AFstY indices for three forest trees species at different locations in Europe. The AFstY index is estimated using the DO3SE (Deposition of Ozone and Stomatal Exchange) model parameterized for Scots pine (Pinus sylvestris), beech (Fagus sylvatica) and holm oak (Quercus ilex). The results show a large difference in the perceived O3 risk when using AOT40 and AFstY indices both between species and regions. The AOT40 index shows a strong north-south gradient across Europe, whereas there is little difference between regions in the modelled values of AFstY. There are significant differences in modelled AFstY between species, which are predominantly determined by differences in the timing and length of the growing season, the periods during which soil moisture deficit limits stomatal conductance, and adaptation to soil moisture stress. This emphasizes the importance of defining species-specific flux response variables to obtain a more accurate quantification of O3 risk. A new flux-based model provides a revised assessment of risks of ozone impacts to European forests.
显示更多 [+] 显示较少 [-]Particulate Matter deposition on Quercus ilex leaves in an industrial city of central Italy
2015
A number of studies have focused on urban trees to understand their mitigation capacity of air pollution. In this study particulate matter (PM) deposition on Quercus ilex leaves was quantitatively analyzed in four districts of the City of Terni (Italy) for three periods of the year. Fine (between 0.2 and 2.5 μm) and Large (between 2.5 and 10 μm) PM fractions were analyzed. Mean PM deposition value on Quercus ilex leaves was 20.6 μg cm−2. Variations in PM deposition correlated with distance to main roads and downwind position relatively to industrial area. Epicuticular waxes were measured and related to accumulated PM. For Fine PM deposited in waxes we observed a higher value (40% of total Fine PM) than Large PM (4% of total Large PM). Results from this study allow to increase our understanding about air pollution interactions with urban vegetation and could be hopefully taken into account when guidelines for local urban green management are realized.
显示更多 [+] 显示较少 [-]