细化搜索
结果 1-10 的 62
Global climatic changes: modelling the potential responses of agro-ecosystems with special reference to crop protection.
1995
Goudriaan J. | Zadoks J.C.
Effects of air filtration on spring wheat grown in open-top field chambers at a rural site. I. Effect on growth, yield and dry matter partitioning.
1992
Temmerman L. de | Vandermeiren K. | Guns M.
On the bonding of manganese, copper and cadmium to peptides of the xylem sap of plant roots.
1991
Przemeck E. | Haase N.U.
Fine root status and element contents in three stands of Norway spruce in the Krkonose mountains
2002
Godbold, D.L. (University of Wales, Bangor (United Kingdom). School of Agricultural and Forest Sciences) | Fritz, H.W. | Cudlin, P. | Bonifacio, E.
Fine root distribution was estimated in three spruce stands with different stages of forest decline. At all 3 sites in the 0-5 cm layer the density of living fine root mass exceeds the necromass. However, in the deeper soil layer necromass exceeds biomass by a factor of 2-4 at Modry Dul, ca. 3 at Alzbetinka and by more than 8 at Mumlavska Hora. The distribution of root density was reflected in the distribution of root length and the number of root tips in each soil layer for the 3 sites
显示更多 [+] 显示较少 [-]Is microbial population associated to ectomycorrhized roots of Norway spruces in Krkonose National Park influenced by forest decline?
2002
Martinotti, M.G. (University of Piemonte Orientale, Novara (Italy)) | Avidano, L. | Fracchia, L.
Investigations on the bacterial communities associated to ectomycorrhized roots of seedlings from three stands with different degrees of regeneration decline (high, intermediate and low) and from seedlings grown on monoliths obtained from the very same stands have been carried out. The results suggest that forest decline does not influence bacterial biomass associated to seedlings roots but induce a clustering of specific bacterial species adapted to the different degree of forest decline
显示更多 [+] 显示较少 [-]The effect of nitrogen fertilization on fungistatic phenolic compounds in roots of beech (Fagus sylvatica L.) and Norway spruce (Picea abies L. [Karst.])
2002
Tomova, L. | Braun, S. | Fluckiger, W. (Institute for Applied Plant Biology, Schonenbuch, (Switzerland))
The phenolic compounds showed different responses to fertilization. Fine roots of beech showed a significant decrease of (-) epicateching (84-99%) and pecatannol (78-98%) with nitrogen fertilization. Fine roots of fertilized Norway spruce showed decreased concentrations of 4-hydroxyacetophenone (33-48%), p-coumaric acid (44-64%), and pecatannol (36-61%). Concentration of p-hydroxybenzoic acid and protocatechuic acid were significantly higher in no fertilized roots. However in both tree species fertilization had no effect on vanillin and quercetin concentration in fine roots. It is suggested that roots of beech and Norway spruce are more susceptible to attacks of pathogens when they are exposed to impact of nitrogen
显示更多 [+] 显示较少 [-]Rhizobacterial Pseudomonas spp. strains harbouring acdS gene could enhance metallicolous legume nodulation in Zn/Pb/Cd mine tailings
2017
Soussou, Souhir | Brunel, Brigitte | Pervent, Marjorie | van Tuinen, Diederik | Cleyet-Marel, Jean Claude | Baudoin, Ezekiel | Laboratoire des symbioses tropicales et méditerranéennes (UMR LSTM) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Université Montpellier 1 (UM1)-Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro) | Agroécologie [Dijon] ; Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Université Bourgogne Franche-Comté [COMUE] (UBFC) | ANR-10-CESA-0006,SyMetal,Rhizostabilisation de déblais miniers à fortes teneurs en métaux par des plantes METALlicoles associées à leurs microorganismes SYMbiotiques(2010)
Phytostabilisation can benefit from phytostimulatory rhizobacteria. Forty-three bacterial strains were isolated from the roots of the metallicolous legume Anthyllis vulneraria ssp. carpatica grown in a highly contaminated mine tailing (total Cd, Pb and Zn were up to 1200; 34,000; and 170,000 mg kg(-1), respectively). We aimed at evaluating their phytostimulatory effects on the development of leguminous metallophytes. Strains were screened for fluorescent siderophores and auxin synthesis, inorganic P solubilisation and 1-amino-cyclopropane-1-carboxylate deaminase (ACCd) activity to define a subset of 11 strains that were inoculated on the leguminous metallophytes A. vulneraria and Lotus corniculatus grown in diluted mine spoil (Zn 34,653; Pb 6842; and Cd 242, all in mg kg-1). All strains were affiliated to Pseudomonas spp. (except two), synthetised auxins and siderophores and solubilised P (except three), and seven of them were ACCd positive. The inoculation effects (shoot-root-nodule biomass, chlorophyll content) depended on legume species and bacterial strain genotype. Phytostimulation scores were unrelated to siderophore/auxin synthesis and P solubilisation rates. Inoculations of the strain nos. 17-43 triggered a 1.2-fold significant increase in the chlorophyll content of A. vulneraria. Chlorophyll content and root biomass of L. corniculatus were significantly increased following the inoculations of the strain nos. 17-22 (1.5-1.4-fold, respectively). The strongest positive effects were related to increases in the nodule biomass of L. corniculatus in the presence of three ACCd-positive strains (1.8-fold), one of which was the highest auxin producer. These data suggest to focus on interactions between ACCd activity and auxin synthesis to enhance nodulation of metallicolous legumes.
显示更多 [+] 显示较少 [-]Rhizobacterial Pseudomonas spp. strains harbouring acdS gene could enhance metallicolous legume nodulation in Zn/Pb/Cd mine tailings
2017
Soussou, Souhir | Brunel, Brigitte | Pervent, Marjorie | van Tuinen, Diederik | Cleyet-Marel, Jean Claude | Baudoin, Ezekiel | Laboratoire des symbioses tropicales et méditerranéennes (UMR LSTM) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Université Montpellier 1 (UM1)-Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro) | Agroécologie [Dijon] ; Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Université Bourgogne Franche-Comté [COMUE] (UBFC) | ANR-10-CESA-0006,SyMetal,Rhizostabilisation de déblais miniers à fortes teneurs en métaux par des plantes METALlicoles associées à leurs microorganismes SYMbiotiques(2010)
Phytostabilisation can benefit from phytostimulatory rhizobacteria. Forty-three bacterial strains were isolated from the roots of the metallicolous legume Anthyllis vulneraria ssp. carpatica grown in a highly contaminated mine tailing (total Cd, Pb and Zn were up to 1200; 34,000; and 170,000 mg kg(-1), respectively). We aimed at evaluating their phytostimulatory effects on the development of leguminous metallophytes. Strains were screened for fluorescent siderophores and auxin synthesis, inorganic P solubilisation and 1-amino-cyclopropane-1-carboxylate deaminase (ACCd) activity to define a subset of 11 strains that were inoculated on the leguminous metallophytes A. vulneraria and Lotus corniculatus grown in diluted mine spoil (Zn 34,653; Pb 6842; and Cd 242, all in mg kg-1). All strains were affiliated to Pseudomonas spp. (except two), synthetised auxins and siderophores and solubilised P (except three), and seven of them were ACCd positive. The inoculation effects (shoot-root-nodule biomass, chlorophyll content) depended on legume species and bacterial strain genotype. Phytostimulation scores were unrelated to siderophore/auxin synthesis and P solubilisation rates. Inoculations of the strain nos. 17-43 triggered a 1.2-fold significant increase in the chlorophyll content of A. vulneraria. Chlorophyll content and root biomass of L. corniculatus were significantly increased following the inoculations of the strain nos. 17-22 (1.5-1.4-fold, respectively). The strongest positive effects were related to increases in the nodule biomass of L. corniculatus in the presence of three ACCd-positive strains (1.8-fold), one of which was the highest auxin producer. These data suggest to focus on interactions between ACCd activity and auxin synthesis to enhance nodulation of metallicolous legumes.
显示更多 [+] 显示较少 [-]Effects of nitrogen deposition on tree growth and soil nutrients in boreal scots pine stands
1998
Nissinen, A. | Hari, P. (Department of Forest Ecology, P.O. Box 24, University of Helsinki, 00014 Helsinki (Finland))
Differences in root uptake of radiocaesium by 30 plant taxa
1997
Broadley, M.R. | Willey, N.J. (Faculty of Applied Sciences, University of the West of England, Coldharbour Lane, Frenchay, Bristol BS16 1QY (United Kingdom))