细化搜索
结果 1-10 的 869
Pesticides in rainfall and air in Italy.
1993
Trevisan M. | Montepiani C. | Ragozza L. | Bartoletti C. | Ioannilli E. | Re A.A.M. del
Le deperissement des forets dans les Vosges: etendue et hypotheses a retenir [polluants, pluies acides, secheresse, France, montagne].
1985
Bonneau M.
Surveillance du deperissement des forets en Belgique [pluie acide].
1985
Laitat E. | Impens R.
Pluies acides, production de nitrate dans les sols forestiers et annees de secheresse estivale: cofacteurs de risque de deperissement des forets. Reflexions sur la synergie.
1989
Bardy J.A.
Fluoride in weathered rock aquifers of southern India: managed aquifer recharge for mitigation
2016
Brindha, Karthikeyan | Jagadeshan, G. | Kalpana, L. | Elango, L.
Climatic condition, geology, and geochemical processes in an area play a major role on groundwater quality. Impact of these on the fluoride content of groundwater was studied in three regions-part of Nalgonda district in Telangana, Pambar River basin, and Vaniyar River basin in Tamil Nadu, southern India, which experience semi-arid climate and are predominantly made of Precambrian rocks. High concentration of fluoride in groundwater above 4 mg/l was recorded. Human exposure dose for fluoride through groundwater was higher in Nalgonda than the other areas. With evaporation and rainfall being one of the major contributors for high fluoride apart from the weathering of fluoride rich minerals from rocks, the effect of increase in groundwater level on fluoride concentration was studied. This study reveals that groundwater in shallow environment of all three regions shows dilution effect due to rainfall recharge. Suitable managed aquifer recharge (MAR) methods can be adopted to dilute the fluoride rich groundwater in such regions which is explained with two case studies. However, in deep groundwater, increase in fluoride concentration with increase in groundwater level due to leaching of fluoride rich salts from the unsaturated zone was observed. Occurrence of fluoride above 1.5 mg/l was more in areas with deeper groundwater environment. Hence, practicing MAR in these regions will increase the fluoride content in groundwater and so physica or chemical treatment has to be adopted. This study brought out the fact that MAR cannot be practiced in all regions for dilution of ions in groundwater and that it is essential to analyze the fluctuation in groundwater level and the fluoride content before suggesting it as a suitable solution. Also, this study emphasizes that long-term monitoring of these factors is an important criterion for choosing the recharge areas.
显示更多 [+] 显示较少 [-]Water with low ionic strength recovers the passivated birnessite-coated sand reactivity towards lincomycin removal
2022
Ying, Jiaolong | Qin, Xiaopeng | Wen, Dongguang | Huang, Fuyang | Liu, Fei
The ionic strength of infiltration water changes with the seasonal alternation of irrigation sources. In this study, reactivity changes of birnessite-coated sand with the fluctuations of ionic strength of infiltration water (i.e. from groundwater to rainwater) and the involved mechanism were investigated through column experiments. Birnessite-coated sand was less reactive in groundwater than in rainwater because of the higher cation content and higher pH of groundwater. The cations in the groundwater were adsorbed on birnessite-coated sand and then desorbed in presence of a dilute aqueous solution represented by rainwater. The reactivity of the passivated birnessite-coated sand was recovered instantaneously, and approximately one-third of the pristine reactivity was restored. During recovery, Na⁺ desorption and lincomycin (LIN) removal both exhibited a two-stage reaction pattern. The LIN removal correlated with Na⁺ desorption (r = 0.99) so that the reactive sites that were binding 5.602 μmol of Na⁺ became available for 1 μmol of LIN removal. These results suggest that the reactivity of manganese oxides toward organic contaminant is associated with the ionic strength of infiltration water and indicate that the partial reactivity can be naturally restored.
显示更多 [+] 显示较少 [-]Oxic urban rivers as a potential source of atmospheric methane
2022
Zhao, Feng | Zhou, Yongqiang | Xu, Hai | Zhu, Guangwei | Zhan, Xu | Zou, Wei | Zhu, Mengyuan | Kang, Lijuan | Zhao, Xingchen
Urban rivers play a vital role in global methane (CH₄) emissions. Previous studies have mainly focused on CH₄ concentrations in urban rivers with a large amount of organic sediment. However, to date, the CH₄ concentration in gravel-bed urban rivers with very little organic sediment has not been well documented. Here, we collected water samples from an oxic urban river (Xin'an River, China; annual mean dissolved oxygen concentration was 9.91 ± 1.99 mg L⁻¹) with a stony riverbed containing very little organic sediment. Dissolved CH₄ concentrations were measured using a membrane inlet mass spectrometer to investigate whether such rivers potentially act as an important source of atmospheric CH₄ and the corresponding potential drivers. The results showed that CH₄ was supersaturated at all sampling sites in the five sampling months. The mean CH₄ saturation ratio (ratio of river dissolved CH₄ concentration to the corresponding CH₄ concentration that is in equilibrium with the atmosphere) across all sampling sites in the five sampling months was 204 ± 257, suggesting that the Xin'an River had a large CH₄ emission potential. The CH₄ concentration was significantly higher in the downstream river than in the upstream river (p < 0.05), which suggested that human activities along the river greatly impacted the CH₄ level. Statistical analyses and incubation experiments indicated that algae can produce CH₄ under oxic conditions, which may contribute to the significantly higher CH₄ concentration in August 2020 (p < 0.001) when a severe algal bloom occurred. Furthermore, other factors, such as heavy rainfall events, dissolved organic carbon concentration, and water temperature, may also be vital factors affecting CH₄ concentration. Our study enhances the understanding of dissolved CH₄ dynamics in oxic urban rivers with very little organic sediment and further proposes feasible measures to control the CH₄ concentration in urban rivers.
显示更多 [+] 显示较少 [-]Contribution of liquid water content enhancing aqueous phase reaction forming ambient particulate nitrosamines
2022
Choi, Na Rae | Park, Seungshik | Ju, Seoryeong | Lim, Yong Bin | Lee, Ji Yi | Kim, Eunhye | Kim, Soontae | Shin, Hye Jung | Kim, Yong Pyo
Contribution of liquid water content (LWC) to the levels of the carcinogenic particulate nitro(so) compounds and the chemistry affecting LWC were investigated based on the observation of seven nitrosamines and two nitramines in rural (Seosan) and urban (Seoul) area in South Korea during October 2019 and a model simulation. The concentrations of both the total nitrosamines and nitramines were higher in Seosan (12.48 ± 16.12 ng/m³ and 0.65 ± 0.71 ng/m³, respectively) than Seoul (7.41 ± 13.59 ng/m³ and 0.24 ± 0.15 ng/m³, respectively). The estimated LWC using a thermodynamic model in Seosan (12.92 ± 9.77 μg/m³) was higher than that in Seoul (6.20 ± 5.35 μg/m³) mainly due to higher relative humidity (75 ± 9% (Seosan); 62 ± 10% (Seoul)) and higher concentrations of free ammonia (0.13 ± 0.09 μmol/m³ (Seosan); 0.08 ± 0.01 μmol/m³ (Seoul)) and total nitric acid (0.09 ± 0.07 μmol/m³ (Seosan); 0.04 ± 0.02 μmol/m³ (Seoul)) in Seosan while neither fog nor rain occurred during the sampling period. The relatively high concentrations of the particulate nitrosamines (>30 ng/m³) only observed probably due to the higher LWC (>10 μg/m³) in Seosan. It implies that aqueous phase reactions involving NO₂ and/or uptake from the gas phase enhanced by LWC could be promoted in Seosan. Strong correlation between the concentrations of nitrosodi-methylamine (NDMA), an example of nitrosamines, simulated by a kinetic box model including the aqueous phase reactions and the measured concentration of NDMA in Seosan (R = 0.77; 0.37 (Seoul)) indicates that the aqueous phase reactions dominantly enhanced the NDMA concentrations in Seosan. On the other hand, it is estimated that the formation of nitrosamines by aqueous phase reaction was not significant due to the relatively lower LWC in Seoul compared to that in Seosan. Furthermore, it is presumed that nitramines are mostly emitted from the primary emission sources. This study implies that the concentration of the particulate nitrosamines can be promoted by aqueous phase reaction enhanced by LWC.
显示更多 [+] 显示较少 [-]Multimedia distribution of polycyclic aromatic hydrocarbons in the Wang Lake Wetland, China
2022
Shi, Changhe | Qu, Chengkai | Sun, Wen | Zhou, Jingzhe | Zhang, Jiawei | Cao, Yu | Zhang, Yuan | Guo, J. (Jiahua) | Zhang, Jiaquan | Qi, Shihua
The Wang Lake Wetland is a highly valued area that is protected due to its high biodiversity. The wetland has a complicated hydrological regime and is subject to frequent human disturbance. We hypothesize that fluctuating hydrology and human activities have varied contributions to the temporal and spatial variations of polycyclic aromatic hydrocarbons (PAHs) in the wetland. Soil (SS), sediment (SD), and water, to acquire dissolved phase (DP) and suspended particulate matter (SPM), samples were collected from eight locations during low- and high-flow periods to elucidate multimedia phase distribution and transport of PAHs. Following the onset of the rainy season, the concentration of SPM-associated PAHs increased significantly, while the DP PAHs remained stable. Individual PAH ratios showed that, although pyrogenic sources are common, petrogenic derived compounds are the main source of PAHs in the Wang Lake Wetland. During the high-flow period, the empirical values for logarithms of the organic carbon-normalized partition coefficients (log KOC) of individual PAH-congeners were lower than the corresponding field-observed log KOC values from the SPM-DP and SD-DP systems, reflecting the complexity in evaluating multi-phase PAH partitioning. During the high-flow period, temperature-driven changes may have changed the sediment from a sink to a source for some high molecular weight PAHs. It was determined that human activities governed the PAH loading in the low-flow period, whereas during high-flow conditions, increased rainfall, higher temperatures, and fishery activity are the main factors controlling PAH input to the Wang Lake Wetland.
显示更多 [+] 显示较少 [-]Global PBDE contamination in cetaceans. A critical review
2022
Bartalini, Alice | Muñoz-Arnanz, Juan | García-Álvarez, Natalia | Fernández, Antonio | Jiménez, Begoña
This review summarizes the most relevant information on PBDEs’ occurrence and their impacts in cetaceans at global scale, with special attention on the species with the highest reported levels and therefore the most potentially impacted by the current and continuous release of these substances. This review also emphasizes the anthropogenic and environmental factors that could increase concentrations and associated risks for these species in the next future. High PBDE concentrations above the toxicity threshold and stationary trends have been related to continuous import of PBDE-containing products in cetaceans of Brazil and Australia, where PBDEs have never been produced. Non-decreasing levels documented in cetaceans from the Northwest Pacific Ocean might be linked to the increased e-waste import and ongoing production and use of deca-BDE that is still allowed in China. Moreover, high levels of PBDEs in some endangered species such as beluga whales (Delphinapterus leucas) in St. Lawrence Estuary and Southern Resident killer whales (Orcinus Orca) are influenced by the discharge of contaminated waters deriving from wastewater treatment plants. Climate change related processes such as enhanced long-range transport, re-emissions from secondary sources and shifts in migration habits could lead to greater exposure and accumulation of PBDEs in cetaceans, above all in those species living in the Arctic. In addition, increased rainfall could carry greater amount of contaminants to the marine environment, thereby, enhancing the exposure and accumulation especially for coastal species. Synergic effects of all these factors and ongoing emissions of PBDEs, expected to continue at least until 2050, could increase the degree of exposure and menace for cetacean populations. In this regard, it is necessary to improve current regulations on PBDEs and broader the knowledge about their toxicological effects, in order to assess health risks and support regulatory protection for cetacean species.
显示更多 [+] 显示较少 [-]