细化搜索
结果 1-3 的 3
Effect of ambient-level gas-phase peroxides on foliar injury, growth, and net photosynthesis in Japanese radish (Raphanus sativus)
2010
Chen, Xuan | Aoki, Masatoshi | Takami, Akinori | Chai, Fahe | Hatakeyama, Shirō
To investigate the effects of ambient-level gas-phase peroxides concurrent with O3 on foliar injury, photosynthesis, and biomass in herbaceous plants, we exposed Japanese radish (Raphanus sativus) to clean air, 50 ppb O3, 100 ppb O3, and 2-3 ppb peroxides + 50 ppb O3 in outdoor chambers. Compared with exposure to 100 ppb O3, exposure to 2-3 ppb peroxides + 50 ppb O3 induced greater damage in foliar injury, net photosynthetic rates and biomass; the pattern of foliar injury and the cause of net photosynthetic rate reduction also differed from those occurring with O3 exposure alone. These results indicate for the first time that sub-ppb peroxides + 50 ppb O3 can cause more severe damage to plants than 100 ppb O3, and that not only O3, but also peroxides, could be contributing to the herbaceous plant damage and forest decline observed in Japan's air-polluted urban and remote mountains areas.
显示更多 [+] 显示较少 [-]Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth
2007
Lin, D. | Xing, B.
Plants need to be included to develop a comprehensive toxicity profile for nanoparticles. Effects of five types of nanoparticles (multi-walled carbon nanotube, aluminum, alumina, zinc, and zinc oxide) on seed germination and root growth of six higher plant species (radish, rape, ryegrass, lettuce, corn, and cucumber) were investigated. Seed germination was not affected except for the inhibition of nanoscale zinc (nano-Zn) on ryegrass and zinc oxide (nano-ZnO) on corn at 2000 mg/L. Inhibition on root growth varied greatly among nanoparticles and plants. Suspensions of 2000 mg/L nano-Zn or nano-ZnO practically terminated root elongation of the tested plant species. Fifty percent inhibitory concentrations (IC50) of nano-Zn and nano-ZnO were estimated to be near 50 mg/L for radish, and about 20 mg/L for rape and ryegrass. The inhibition occurred during the seed incubation process rather than seed soaking stage. These results are significant in terms of use and disposal of engineered nanoparticles. Engineered nanoparticles can inhibit the seed germination and root growth.
显示更多 [+] 显示较少 [-]Effects of selected trace metals on germinating seeds of six plant species
1991
Carlson, C.L. (Savannah River Ecology Lab., Aiken, SC (USA). Biogeochemistry Div.) | Adriano, D.C. | Sajwan, K.S. | Abels, S.L. | Thoma, D.P. | Driver, J.T.