细化搜索
结果 1-7 的 7
Long-term trends of second generation anticoagulant rodenticides (SGARs) show widespread contamination of a bird-eating predator, the Eurasian Sparrowhawk (Accipiter nisus) in Britain
2022
Broughton, Richard K. | Searle, Kate R. | Walker, Lee A. | Potter, Elaine D. | Pereira, M Glória | Carter, Heather | Sleep, Darren | Noble, David G. | Butler, Adam | Johnson, Andrew C.
Second generation anticoagulant rodenticides (SGARs) are widely used to control rodents around the world. However, contamination by SGARs is detectable in many non-target species, particularly carnivorous mammals or birds-of-prey that hunt or scavenge on poisoned rodents. The SGAR trophic transfer pathway via rodents and their predators/scavengers appears widespread, but little is known of other pathways of SGAR contamination in non-target wildlife. This is despite the detection of SGARs in predators that do not eat rodents, such as specialist bird-eating hawks. We used a Bayesian modelling framework to examine the extent and spatio-temporal trends of SGAR contamination in the livers of 259 Eurasian Sparrowhawks, a specialist bird-eating raptor, in regions of Britain during 1995–2015. SGARs, predominantly difenacoum, were detected in 81% of birds, with highest concentrations in males and adults. SGAR concentrations in birds were lowest in Scotland and higher or increasing in other regions of Britain, which had a greater arable or urban land cover where SGARs may be widely deployed for rodent control. However, there was no overall trend for Britain, and 97% of SGAR residues in Eurasian Sparrowhawks were below 100 ng/g (wet weight), which is a potential threshold for lethal effects. The results have potential implications for the population decline of Eurasian Sparrowhawks in Britain. Fundamentally, the results indicate an extensive and persistent contamination of the avian trophic transfer pathway on a national scale, where bird-eating raptors and, by extension, their prey appear to be widely exposed to SGARs. Consequently, these findings have implications for wildlife contamination worldwide, wherever these common rodenticides are deployed, as widespread exposure of non-target species can apparently occur via multiple trophic transfer pathways involving birds as well as rodents.
显示更多 [+] 显示较少 [-]First evidence of anticoagulant rodenticides in fish and suspended particulate matter: spatial and temporal distribution in German freshwater aquatic systems
2019
Kotthoff, Matthias | Rüdel, Heinz | Jürling, Heinrich | Severin, Kevin | Hennecke, Stephan | Friesen, Anton | Koschorreck, Jan
Anticoagulant rodenticides (ARs) have been used for decades for rodent control worldwide. Research on the exposure of the environment and accumulation of these active substances in biota has been focused on terrestrial food webs, but few data are available on the impact of ARs on aquatic systems and water organisms. To fill this gap, we analyzed liver samples of bream (Abramis brama) and co-located suspended particulate matter (SPM) from the German Environmental Specimen Bank (ESB). An appropriate method was developed for the determination of eight different ARs, including first- and second-generation ARs, in fish liver and SPM. Applying this method to bream liver samples from 17 and 18 sampling locations of the years 2011 and 2015, respectively, five ARs were found at levels above limits of quantifications (LOQs, 0.2 to 2 μg kg⁻¹). For 2015, brodifacoum was detected in 88% of the samples with a maximum concentration of 12.5 μg kg⁻¹. Moreover, difenacoum, bromadiolone, difethialone, and flocoumafen were detected in some samples above LOQ. In contrast, no first generation AR was detected in the ESB samples. In SPM, only bromadiolone could be detected in 56% of the samples at levels up to 9.24 μg kg⁻¹. A temporal trend analysis of bream liver from two sampling locations over a period of up to 23 years revealed a significant trend for brodifacoum at one of the sampling locations.
显示更多 [+] 显示较少 [-]Degradation of the potential rodent contraceptive quinestrol and elimination of its estrogenic activity in soil and water
2014
Zhang, Quan | Wang, Cui | Liu, Wanpeng | Qu, Jiapeng | Liu, Ming | Zhang, Yanming | Zhao, Meirong
Quinestrol has shown potential for use in the fertility control of the plateau pika population of the Qinghai–Tibet Plateau. However, the environmental safety and fate of this compound are still obscure. Our study investigated degradation of quinestrol in a local soil and aquatic system for the first time. The results indicate that the degradation of quinestrol follows first-order kinetics in both soil and water, with a dissipation half-life of approximately 16.0 days in local soil. Microbial activity heavily influenced the degradation of quinestrol, with 41.2 % removal in non-sterile soil comparing to 4.8 % removal in sterile soil after incubation of 10 days. The half-lives in neutral water (pH 7.4) were 0.75 h when exposed to UV light (λ = 365 nm) whereas they became 2.63 h when exposed to visible light (λ > 400 nm). Acidic conditions facilitated quinestrol degradation in water with shorter half-lives of 1.04 and 1.47 h in pH 4.0 and pH 5.0 solutions, respectively. Moreover, both the soil and water treatment systems efficiently eliminated the estrogenic activity of quinestrol. Results presented herein clarify the complete degradation of quinestrol in a relatively short time. The ecological and environmental safety of this compound needs further investigation.
显示更多 [+] 显示较少 [-]Effectiveness of rodenticides for managing invasive roof rats and native deer mice in orchards
2014
Baldwin, Roger A. | Quinn, Niamh | Davis, David H. | Engeman, Richard M.
Roof rats (Rattus rattus) and deer mice (Peromyscus maniculatus) are occasional pests of nut and tree fruit orchards throughout California and in many other parts of the USA and beyond. In general, the most practical and cost-effective control method for rodents in many agricultural environments is the use of rodenticides (toxic baits), but little or no information exists on the efficacy of current rodenticides in controlling roof rats and deer mice in orchards. Therefore, our goals were to develop an index of rodent activity to monitor efficacy of rodenticides and to subsequently test the efficacy of three California Department of Food and Agriculture rodenticide baits (0.005 % chlorophacinone treated oats, 0.005 % diphacinone treated oats, and 0.005 % diphacinone wax block) to determine their utility for controlling roof rats and deer mice in agricultural orchards. We determined that a general index using the number of roof rat photos taken at a minimum of a 5-min interval was strongly correlated to the minimum number known estimate of roof rats; this approach was used to monitor roof rat and deer mouse populations pre- and post-treatment. Of the baits tested, the 0.005 % diphacinone treated oats was most effective for both species; 0.005 % chlorophacinone grain was completely ineffective against roof rats. Our use of elevated bait stations proved effective at providing bait to target species and should substantially limit access to rodenticides by many non-target species.
显示更多 [+] 显示较少 [-]Longevity of rodenticide bait pellets in a tropical environment following a rat eradication program
2014
Berentsen, Are R. | Pitt, William C. | Eisemann, John D. | Engeman, Richard M.
Invasive rodents (primarily Rattus spp.) are responsible for loss of biodiversity in island ecosystems worldwide. Large-scale rodenticide applications are typically used to eradicate rats and restore ecological communities. In tropical ecosystems, environmental conditions rapidly degrade baits and competition for baits by non-target animals can result in eradication failure. Our objective was to evaluate persistence of rodenticide baits during a rat eradication program on Palmyra Atoll; a remote tropical atoll with intense competition for resources by land crabs. Following aerial application, bait condition was monitored in four terrestrial environments and in the canopy foliage of coconut palms. Ten circular PVC hoops were fixed in place in each of Palmyra’s four primary terrestrial habitats and five rodenticide pellets were placed in each hoop. Five coconut palms were selected in three distinct regions of the atoll. One rodenticide pellet was placed on each of five palm fronds in each coconut palm. Fresh baits were placed in all monitoring locations after each broadcast bait application. Bait condition and survival was monitored for 7 days after the first bait application and 6 days after second application. Bait survival curves differed between applications at most monitoring sites, suggesting a decrease in overall rat activity as a result of rodenticide treatment. One terrestrial site showed near 100 % bait survival after both applications, likely due to low localized rat and crab densities. Median days to pellet disappearance were one and two days for the first and second application, respectively. Differences in survival curves were not detected in canopy sites between bait applications. Median days to pellet disappearance in canopy sites were 2 and 4 days for the first and second application, respectively. Frequent rainfall likely contributed to rapid degradation of bait pellets in coconut palm fronds.
显示更多 [+] 显示较少 [-]Rodenticide efficacy in sewers in São Paulo, Brazil
2019
Papini, Solange | de Masi, Eduardo | Nakagawa, Lia E. | de Oliveira, Jennifer C. B.
Rodents infest urban environments, causing damage and acting as vectors for disease transmission. Currently, anticoagulants are the most widely used chemical rodenticides, and their extensive and widespread use can contaminate the environment. To ensure effectiveness and avoid accumulation of rodent baits in the environment, it is important to evaluate how long rodent baits maintain their palatability and efficacy. In rodent control programs, rodent baits are placed in locations such as sewers, but after a few days, baits appear altered, causing doubts about the control efficacy. For this reason, baits are replaced periodically, which increases costs and generation of chemical waste. The objective of this study was to evaluate the palatability and efficacy of commercial paraffin-type rodent bait blocks placed in sewers in São Paulo City over a period of 90 days. Bait blocks were placed in sewers and collected after 30, 60, and 90 days. Additionally, in a laboratory two-choice test, wild-caught urban Norway rats were offered 40–60 g of bait and an equal volume of standard rat pellets. The amount of bait and rat pellet consumed was registered, the palatability was calculated, and the efficacy was measured as the percentage mortality over 14 days. The results showed that, even when they had an altered appearance, bait blocks remained palatable to the rats and were effective after at least 90 days. Leaving bait blocks for longer periods could be an effective strategy for reducing costs and could help to ensure the control of urban rodents in an environmentally sustainable way.
显示更多 [+] 显示较少 [-]Exposure of non-target small mammals to anticoagulant rodenticide during chemical rodent control operations
2019
Elmeros, Morten | Bossi, Rossana | Christensen, Thomas Kjær | Kjær, Lene Jung | Lassen, Pia | Topping, Christopher John
The extensive use of anticoagulant rodenticides (ARs) results in widespread unintentional exposure of non-target rodents and secondary poisoning of predators despite regulatory measures to manage and reduce exposure risk. To elucidate on the potential vectoring of ARs into surrounding habitats by non-target small mammals, we determined bromadiolone prevalence and concentrations in rodents and shrews near bait boxes during an experimental application of the poison for 2 weeks. Overall, bromadiolone was detected in 12.6% of all small rodents and insectivores. Less than 20 m from bait boxes, 48.6% of small mammals had detectable levels of bromadiolone. The prevalence of poisoned small mammals decreased with distance to bait boxes, but bromadiolone concentration in the rodenticide positive individuals did not. Poisoned small mammals were trapped up to 89 m from bait boxes. Bromadiolone concentrations in yellow-necked mice (Apodemus flavicollis) were higher than concentrations in bank vole (Myodes glareolus), field vole (Microtus agrestis), harvest mouse (Micromys minutus), and common shrew (Sorex araneus). Our field trials documents that chemical rodent control results in widespread exposure of non-target small mammals and that AR poisoned small mammals disperse away from bating sites to become available to predators and scavengers in large areas of the landscape. The results suggest that the unintentional secondary exposure of predators and scavengers is an unavoidable consequence of chemical rodent control outside buildings and infrastructures.
显示更多 [+] 显示较少 [-]