细化搜索
结果 1-10 的 84
Evolution of antibiotic resistance genes and bacterial community during erythromycin fermentation residue composting 全文
2022
Ren, Jianjun | Deng, Liujie | Li, Chunyu | Li, Zhijie | Dong, Liping | Zhao, Jian | Huhetaoli, | Zhang, Jin | Niu, Dongze
The removal efficiency of antibiotic resistance genes (ARGs) is the biggest challenge for the treatment of erythromycin fermentation residue (EFR). In the current research, 0% (control), 10% (T1), and 30% (T2) spray-dried EFR were composted with bulking materials, consisting of cattle manure and maize straw, for 30 days. Environmental factors and bacterial community on the behaviors of ARGs were further investigated. Apart from the high levels of erythromycin, the electrical conductivities were also increased by 66.7% and 291.7% in the samples of T1 and T2, respectively. After 30 days of composting, total ARGs in the samples of control were decreased by 78.1%–91.2%, but those of T1 and T2 were increased 14.5–16.7- and 38.5–68.7-fold. ARGs related to ribosomal protection (erm) dominated the samples of T1 and T2 at D 13 and 30, especially that ermF accounted for more than 80% of the total ARGs. Furthermore, the results of bacterial community revealed that EFR promoted the growth of Proteobacteria and Bacteroidetes, but inhibited that of Actinobacteria, Verrucomicrobia and Chloroflexi. Network analysis revealed that the enriched ARGs had strong correlation with seven bacterial genera, including Halomonas, Oceanobacillus, and Alcaligenes, most of which are halotolerant. Above all, erythromycin combined with high salinity can have synergistic effect on the enrichment of ARGs and their hosts.
显示更多 [+] 显示较少 [-]Size-specific sensitivity of cladocerans to freshwater salinization: Evidences from the changes in life history and population dynamics 全文
2022
Huang, Jing | Li, Yurou | Sun, Yunfei | Zhang, Lu | Lyu, Kai | Yang, Zhou
The salinization of the global freshwater system caused by various human activities and climate change has become a common problem threatening freshwater biodiversity and resources, which may affect a variety of species of cladocerans at individual and population levels. In order to comprehensively evaluate the impact of salinization on different-sized cladocerans at individual and population levels, we exposed two species of cladocerans with obvious body size difference, Daphnia magna and Moina macrocopa, to seven salinities (0, 0.02, 0.04, 0.06, 0.08, 0.10, 0.12 M), recorded individual life history traits and population growth dynamics, and used multiple mechanistic models to fit the data. At the individual level, the median effect concentration of survival time, total offspring per female, and number of broods of D. magna were significantly higher than those of M. macrocopa. At the population level, the decrease in carrying capacity of D. magna with increasing salinity was significantly less than that of M. macrocopa. At the same salinity treatment, the integrated biomarker response indexes value of M. macrocopa is higher than that of D. magna. Therefore, it was further inferred that the sensitivity of small-sized species M. macrocopa to salinity stress is significantly higher than that of big-sized species D. magna. Thus, freshwater salinization may result in the replacement of smaller salt-intolerant cladocerans with larger salt-tolerant cladocerans, which may have dramatic effects on freshwater communities and ecosystems. Additionally, the increase of salinity had a greater impact on the population level of D. magna and M. macrocopa than on the individual level, indicating that population level of cladocerans was more susceptible to salinity stress. Experiments only based on individuals may underestimate the ecologically related changes in populations and communities, thus understanding the impact of salinization on freshwater systems needs to consider multiple ecological levels.
显示更多 [+] 显示较少 [-]Pennisetum giganteum: An emerging salt accumulating/tolerant non-conventional crop for sustainable saline agriculture and simultaneous phytoremediation 全文
2020
Hayat, Kashif | Zhou, Yuanfei | Menhas, Saiqa | Bundschuh, Jochen | Hayat, Sikandar | Ullah, Abid | Wang, Juncai | Chen, Xunfeng | Zhang, Dan | Zhou, Pei
Soil salinity is a global threat to the environmental sustainability, in particular to the developing countries due to their limited resources for soil reclamation. In a greenhouse pot experiment, Pennisetum giganteum, was investigated for its tolerance to salt stress and simultaneous phytoremediation capability. 4 weeks post-germination, NaCl (10, 50, 150, 250, 350, 450 and 550 mM) and tap water (control) was applied after every 2 consecutive days for two weeks in a completely randomized design and their effects were established in the growth and physico-chemical aspects of these plants. Our results indicated that P. giganteum withstood high salt stress (with 550 mM NaCl tolerance threshold level). Interestingly, the plants grown under saline conditions had higher biomass yield when compared to the control. Furthermore, the antioxidant activity and proline content of plants under saline conditions were significantly (p < 0.05) higher than those of control plants, indicating their adaptability to high salt stress. Biochemical analysis such as chlorophyll contents, total soluble sugar, total phenol and protein contents revealed considerable differences between plants grown under higher NaCl stress compared to the control conditions. Additionally, significantly different ionic flux along with high K⁺/Na⁺ ratio was observed in plants grown under a range of saline conditions. The results obtained are therefore of value to indicate P. giganteum an eco-friendly alternate source for the phytoremediation of saline soils and may be used as base for future research on this plant. Effective strategies need to be adopted with this plant to reclaim saline-degraded as well as marginal soils.
显示更多 [+] 显示较少 [-]Effects of potash mining on river ecosystems: An experimental study 全文
2017
Cañedo-Argüelles, Miguel | Brucet, Sandra | Carrasco, Sergi | Flor-Arnau, Núria | Ordeix, Marc | Ponsá, Sergio | Coring, Eckhard
In spite of being a widespread activity causing the salinization of rivers worldwide, the impact of potash mining on river ecosystems is poorly understood. Here we used a mesocosm approach to test the effects of a salt effluent coming from a potash mine on algal and aquatic invertebrate communities at different concentrations and release modes (i.e. press versus pulse releases). Algal biomass was higher in salt treatments than in control (i.e. river water), with an increase in salt-tolerant diatom species. Salt addition had an effect on invertebrate community composition that was mainly related with changes in the abundance of certain taxa. Short (i.e. 48 h long) salt pulses had no significant effect on the algal and invertebrate communities. The biotic indices showed a weak response to treatment, with only the treatment with the highest salt concentration causing a consistent (i.e. according to all indices) reduction in the ecological quality of the streams and only by the end of the study. Overall, the treatment's effects were time-dependent, being more clear by the end of the study. Our results suggest that potash mining has the potential to significantly alter biological communities of surrounding rivers and streams, and that specific biotic indices to detect salt pollution should be developed.
显示更多 [+] 显示较少 [-]Toxicity of road salt to Nova Scotia amphibians 全文
2009
Collins, Sara J. | Russell, Ronald W.
The deposition of chemical pollutants into roadside wetlands from runoff is a current environmental concern. In northern latitudes, a major pollutant in runoff water is salt (NaCl), used as de-icing agents. In this study, 26 roadside ponds were surveyed for amphibian species richness and chloride concentration. Acute toxicity tests (LC50) were performed on five locally common amphibian species using a range of environmentally significant NaCl concentrations. Field surveys indicated that spotted salamanders (Ambystoma maculatum) and wood frogs (Rana sylvatica) did not occupy high chloride ponds. American toads (Bufo americanus) showed no pond preference based on chloride concentration. Acute toxicity tests showed spotted salamanders and wood frogs were most sensitive to chloride, and American toads were the least. Spring peepers (Pseudacris crucifer) and green frogs (Rana clamitans) showed intermediate sensitivities. We concluded that chloride concentrations in ponds due to application of de-icing salts, influenced community structure by excluding salt intolerant species. Salt toxicity is presented as a mechanism affecting the distribution of amphibians and structure of amphibian communities in roadside wetlands.
显示更多 [+] 显示较少 [-]Road salt is more toxic to wood frog embryos from polluted ponds 全文
2022
Forgione, Mia E. | Brady, Steven P.
Organisms that rely on aquatic habitats in roaded landscapes face a growing array of consequences from pollution, especially due to freshwater salinization. Critically, these consequences can vary from population to population depending on exposure histories and evolutionary responses. Prior studies using transplant and common garden experiments have found that aquatic-stage wood frogs (Rana sylvatica) from roadside populations are less fit in the wild and more sensitive to road salt than their counterparts from woodland populations away from roads. While this pattern is consistent with local maladaptation, unresolved insights into the timing and duration of these effects leave open the possibility that negative outcomes are countered during development. Here, we asked whether the survival disadvantage of roadside wood frogs is stage-specific, and whether this disadvantage reverses before metamorphosis. We used a common garden road salt exposure experiment and a field-based reciprocal transplant experiment to examine differences in survival across life-history stage and with respect to population type. In each experimental context, roadside embryos showed a survival disadvantage relative to woodland embryos, and this disadvantage was not reversed prior to metamorphosis. We also found that salt exposure delayed metamorphosis more strongly for roadside than woodland populations. Together, these results suggest that local maladaptation in aquatic-stage wood frogs is driven by embryonic sensitivity to salt and that roadside populations are further compromised by delayed developmental rates. Future studies should consider which embryonic traits fail to adapt to salt toxicity, and how those traits might correlate with terrestrial trait variation.
显示更多 [+] 显示较少 [-]Roles of endophytic bacteria in Suaeda salsa grown in coastal wetlands: Plant growth characteristics and salt tolerance mechanisms 全文
2021
Guo, Jiameng | Chen, Youyuan | Lu, Pengzhan | Liu, Ming | Sun, Ping | Zhang, Zhiming
Salinity is a limiting factor in the growth of plants in coastal wetlands. The interaction of halophytes with salt-tolerant endophytes has been one of the major concerns in this area. However, the mechanism by which endophytes promote halophyte growth remains unclear. The growth and physiological responses of Suaeda salsa inoculated with endophytic bacteria (Sphingomonas prati and Sphingomonas zeicaulis) at 0 ‰ and 20 ‰ NaCl were studied. The results showed that Sphingomonas zeicaulis had stronger positive effects on the growth of Suaeda salsa under 0 ‰ NaCl, and Sphingomonas prati performed better under 20 ‰ NaCl. Sphingomonas prati inoculation increased the mean height, root length, fresh weight and dry weight by 45.43%, 9.91%, 82.00% and 102.25%, respectively, compared with the uninoculated treatment at 20 ‰ NaCl. Sphingomonas prati inoculation decreased MDA content by 23.78%, while the soluble sugar and soluble protein contents increased by 15.08% and 12.57%, respectively, compared to the control, at 20 ‰ NaCl. Increases in SOD and CAT in the Sphingomonas prati inoculation were 1.03 and 1.47-fold greater, respectively, than in the Sphingomonas zeicaulis inoculation, under 20 ‰ NaCl. Moreover, Sphingomonas prati and Sphingomonas zeicaulis had antagonistic interactions in Suaeda salsa according to the results of the “interaction equation” (most G values were negative). PCA, clustering analysis and the PLS model revealed two mechanisms for regulating plant salt tolerance by which Sphingomonas prati enhanced Suaeda salsa growth: (1) Sphingomonas prati improved intracellular osmotic metabolism and (2) Sphingomonas prati promoted the production of CAT in the antioxidant enzyme system and retained permeability. This study provides new insight into the comprehensive understanding and evaluation of endophytic bacteria as biological inoculants in plants under salt stress.
显示更多 [+] 显示较少 [-]Tracking gene expression, metabolic profiles, and biochemical analysis in the halotolerant basidiomycetous yeast Rhodotorula mucilaginosa EXF-1630 during benzo[a]pyrene and phenanthrene biodegradation under hypersaline conditions 全文
2021
Martínez-Ávila, Liliana | Peidro-Guzmán, Heidy | Pérez-Llano, Yordanis | Moreno Perlín, Tonatiuh | Sánchez-Reyes, Ayixon | Aranda, Elisabet | Ángeles de Paz, Gabriela | Fernández-Silva, Arline | Folch-Mallol, Jorge Luis | Cabana, Hubert | Gunde-Cimerman, Nina | Batista-García, Ramón Alberto
Polyaromatic phenanthrene (Phe) and benzo[a]pyrene (BaP) are highly toxic, mutagenic, and carcinogenic contaminants widely dispersed in nature, including saline environments. Polyextremotolerant Rhodotorula mucilaginosa EXF-1630, isolated from Arctic sea ice, was grown on a huge concentration range -10 to 500 ppm- of Phe and BaP as sole carbon sources at hypersaline conditions (1 M NaCl). Selected polycyclic aromatic hydrocarbons (PAHs) supported growth as well as glucose, even at high PAH concentrations. Initially, up to 40% of Phe and BaP were adsorbed, followed by biodegradation, resulting in 80% removal in 10 days. While extracellular laccase, peroxidase, and un-specific peroxygenase activities were not detected, NADPH-cytochrome c reductase activity peaked at 4 days. The successful removal of PAHs and the absence of toxic metabolites were confirmed by toxicological tests on moss Physcomitrium patens, bacterium Aliivibrio fischeri, human erythrocytes, and pulmonary epithelial cells (A549). Metabolic profiles were determined at the midpoint of the biodegradation exponential phase, with added Phe and BaP (100 ppm) and 1 M NaCl. Different hydroxylated products were found in the culture medium, while the conjugative metabolite 1-phenanthryl-β-D-glucopyranose was detected in the medium and in the cells. Transcriptome analysis resulted in 870 upregulated and 2,288 downregulated transcripts on PAHs, in comparison to glucose. Genomic mining of 61 available yeast genomes showed a widespread distribution of 31 xenobiotic degradation pathways in different yeast lineages. Two distributions with similar metabolic capacities included black yeasts and mainly members of the Sporidiobolaceae family (including EXF-1630), respectively. This is the first work describing a metabolic profile and transcriptomic analysis of PAH degradation by yeast.
显示更多 [+] 显示较少 [-]Integration of environmental metabolomics and physiological approach for evaluation of saline pollution to rice plant 全文
2021
Ma, Nyuk Ling | Lam, Su Datt | Che Lah, Wan Afifudeen | Aḥmad, ʻAzīz | Rinklebe, Jörg | Sonne, Christian | Peng, Wanxi
Salinisation of soil is associated with urban pollution, industrial development and rising sea level. Understanding how high salinity is managed at the plant cellular level is vital to increase sustainable farming output. Previous studies focus on plant stress responses under salinity tolerance. Yet, there is limited knowledge about the mechanisms involved from stress state until the recovery state; our research aims to close this gap. By using the most tolerance genotype (SS1-14) and the most susceptible genotype (SS2-18), comparative physiological, metabolome and post-harvest assessments were performed to identify the underlying mechanisms for salinity stress recovery in plant cells. The up-regulation of glutamine, asparagine and malonic acid were found in recovered-tolerant genotype, suggesting a role in the regulation of panicle branching and spikelet formation for survival. Rice could survive up to 150 mM NaCl (∼15 ds/m) with declined of production rate 5–20% ranged from tolerance to susceptible genotype. This show that rice farming may still be viable on the high saline affected area with the right selection of salt-tolerant species, including glycophytes. The salt recovery biomarkers identified in this study and the adaption underlined could be empowered to address salinity problem in rice field.
显示更多 [+] 显示较少 [-]Simultaneous energy harvest and nitrogen removal using a supercapacitor microbial fuel cell 全文
2020
Cai, Teng | Jiang, Nan | Zhen, Guangyin | Meng, Lijun | Song, Jialing | Chen, Gang | Liu, Yanbiao | Huang, Manhong
The insufficient removal of pollutants and bioelectricity production have become a bottleneck for high-concentration saline wastewater treatment through microbial fuel cell (MFC) technology. Herein, a novel supercapacitor MFC (SC-MFC) was constructed with carbon nanofibers composite electrodes to investigate pollutant removal ability, power generation, and electrochemical properties using real landfill leachate. The possible extracellular electron transfer and nitrogen element conversion pathways in the bioanode were also analyzed. Results showed that the SC-MFC had higher pollutant removal rates (COD: 59.4 ± 1.2%; NH₄⁺-N: 78.2 ± 1.6%; and TN: 77.8 ± 1.2%), smaller internal impedance Rₜ (∼6 Ω), higher exchange current density i₀ (2.1 × 10⁻⁴ A cm⁻²), and a larger catalytic current j₀ (704 μA cm⁻²) with 60% leachate than those with 10% and 20% leachate, resulting in a power output of 298 ± 22 mW m⁻². Ammonium could be incorporated by chemoautotrophic bacteria to produce organic compounds that could be further utilized by heterotrophs to generate power when biodegradable organic matters are depleted. Three conversion pathways of nitrogen might be involved, including NH₄⁺ diffusion from anode to cathode chamber, nitrification, and the denitrification process. Additionally, cyclic voltammetry tests showed that both the direct electron transfer (DET) and the mediator electron transfer in bioanode were involved and dominated by DET. The microbial analysis revealed that the bioanode was dominated by salt-tolerant denitrifying bacteria (38.5%), which was deduced to be the key functional microorganism. The electrochemically active bacteria decreased significantly from 61.7% to 4% over three stages of leachate treatment. Overall, the SC-MFC has demonstrated the potential for wastewater treatment along with energy harvesting and provides a new avenue toward sustainable leachate management.
显示更多 [+] 显示较少 [-]