细化搜索
结果 1-10 的 1,246
Biodegradation of weathered crude oil in seawater with frazil ice 全文
2020
Lofthus, Synnøve | Bakke, Ingrid | Tremblay, Julien | Greer, Charles | Brakstad, Odd Gunnar
As ice extent in the Arctic is declining, oil and gas activities will increase, with higher risk of oil spills to the marine environment. To determine biotransformation of dispersed weathered oil in newly formed ice, oil dispersions (2–3 ppm) were incubated in a mixture of natural seawater and frazil ice for 125 days at −2 °C. Dispersed oil in seawater without frazil ice were included in the experimental setup. Presence or absence of frazil ice was a strong driver for microbial community structures and affected the rate of oil degradation. n-alkanes were degraded faster in the presence of frazil ice, the opposite was the case for naphthalenes and 2–3 ring PAHs. No degradation of 4–6 ring PAHs was observed in any of the treatments. The total petroleum oil was not degraded to any significant degree, suggesting that oil will freeze into the ice matrix and persist throughout the icy season. | publishedVersion
显示更多 [+] 显示较少 [-]Field Monitoring of 2010-Tsunami Impact on Agricultural Soils and Irrigation Waters: Central Chile 全文
2016
Casanova Pinto, Manuel | Salazar Guerrero, Osvaldo | Oyarzún, Irene | Tapia Fernández, Yasna | Fajardo, Mario
An in situ post tsunami study was conducted to assess the effect of water management and rainfalls in soil properties and water quality at a low-lying coastal area of central Chile affected by Mw8.8 Earthquake Tsunami the night of 27 February 2010. Soil samples were taken at two depths (0 to 20 and 20 to 40 cm) during 2010 and late 2012. Water quality in a local shallow well was also monitored in 2010 and 2012. High soil salinity was recorded 2 months later than tsunami occurs, closely associated to water-soluble chloride and cations (Cl- >> Na+ >> Ca2+> Mg2+> K+), ionic toxicities, and vegetal inhibition (Vasconcellea pubescens) by less available water to plants. An initial reduction in soil pH due to ionic strength and coarse-textured class of soil was observed and the sodium adsorption ratio (SAR) in soil varied between 5.7 and 11.2 (mmol L-1)(0.5) showing to be saline. Although SARw values are very high (> 18 (mmol L-1) 0.5), it does not exist risks of reduction on soil infiltration rates according to ECw (> 5 dS m(-1)) obtained. After 2 years, soil salinity was drastically reduced in the affected areas due to high soil permeability and natural attenuation (rainfalls and leaching effects), with sulfate and bicarbonate concentrations showing excessive values. Further, irrigation water quality returned to pre-tsunami situation, with only levels of sodium slightly exceeding desirable range from health point of view. Finally, it is suggested a proper design of irrigation systems before implementing other management practices
显示更多 [+] 显示较少 [-]Impact of chronic cadmium exposure at environmental dose on escape behaviour in sea bass (Dicentrarchus labrax L.; Teleostei, Moronidae). 全文
2008
Faucher, Karine | Fichet, Denis | Miramand, Pierre | Lagardère,
peer reviewed | The effect of chronic exposure to a low concentration (0.5 microg l(-1)) of cadmium ions was investigated on escape behaviour of sea bass, Dicentrarchus labrax, using video analysis. Observations were also performed on the microanatomy of lateral system neuromasts. When fish were exposed for 4h per day over 8 days to the cadmium ions, most of both types of neuromasts observed remained intact. However, some of them presented damaged sensory maculae. Whereas before cadmium exposure, fish responded positively to nearly all the lateral system stimulations, after exposure they decreased by about 10% their positive responses to stimulations. From the 15th day after the beginning of cadmium exposure, neuromasts presented progressively less damage, cadmium accumulation in gills and scales decreased significantly and fish escape behaviour had recovered. This study presents a new concept in ecotoxicology: using behavioural change to reveal the effects of pollution levels, scarcely detectable by currently used techniques (physiological responses).
显示更多 [+] 显示较少 [-]Ultraviolet light-activated peroxymonosulfate (UV/PMS) system for humic acid mineralization: Effects of ionic matrix and feasible application in seawater reverse osmosis desalination 全文
2022
Alayande, Abayomi Babatunde | Hong, Seungkwan
The use of membrane-based technology has evolved into an important strategy for supplying freshwater from seawater and wastewater to overcome the problems of water scarcity around the world. However, the presence of natural organic matter (NOM), including humic substances affects the performance of the process. Here, we present a systematic report on the mineralization of humic acid (HA), as a model for NOM, in high concentration of salts using the ultraviolet light-activated peroxymonosulfate (UV/PMS) system as a potential alternative for HA elimination during membrane-based seawater desalination and water treatment processes. Effects of various parameters such as PMS concentration, solution type, pH, anions, and anion-cation matrix on HA mineralization were assessed. The results show that 100%, 78% and 58% of HA (2 mg/L TOC) were mineralized with rate constants of 0.085 min⁻¹, 0.0073 min⁻¹, and 0.0041 min⁻¹ after 180 min reaction time at pH 7 when 0.5 mM PMS was used in deionized water, sodium chloride solution (35,000 ppm) and synthetic seawater, respectively. The reduced efficiency under saline conditions was attributed to the presence of anions in the system that acted as sulfate and hydroxyl radicals’ scavengers. Furthermore, the safety of the treated synthetic seawater was evaluated by analyzing the residual transformed products. Overall, pretreatment with the UV/PMS system mitigated fouling on the RO membrane.
显示更多 [+] 显示较少 [-]Ni accumulation and effects on a representative Cnidaria - Exaiptasia pallida during single element exposure and in combination with Mn 全文
2022
Iyagbaye, Louis | Reichelt-Brushett, Amanda | Benkendorff, Kirsten
Nickel (Ni) and manganese (Mn) are well known for the production of steel and alloys and are commonly found co-occurring in Ni ores. They are metals of environmental concern and contamination in the marine environment is problematic single exposures and in combination. Several studies have documented the effects of single metal exposure on the model anemone E. pallida, but research on the effects of metal mixtures is far less common. This novel study assesses the accumulation and stress effects of Ni and Mn over a 12-d exposure period. E. pallida were exposed in two separate experiments; Ni alone and Ni in combination with Mn, to assess accumulation, along with any effect on the density of symbionts and anemone tentacle length. Anemones were transferred to ambient seawater to assess depuration and recovery over 6 d. Anemone tissue accumulated Ni at a magnitude of five times higher in a mixture of 0.5 mg Ni/L with 2.5 mg Mn/L compared to the same concentration in a single Ni exposure experiment. In both experiments, Ni and Mn preferentially accumulated in the Symbiodinium spp. compared to the anemone tissue, but Ni depuration was more rapid in the mixture than Ni alone exposure. This study reveals a significant reduction in anemone Symbiodinium spp. density after exposure to Ni and Mn mixtures, but not with Ni exposure alone. A significant dose-dependent reduction in tentacle length was observed in anemones after 12 d of the Ni exposure both with and without Mn. The estimated sublethal concentration that causes tentacle retraction in 50% of test anemones (EC50) by Ni was 0.51 (0.25–0.73) mg/L, while in combination with Mn the EC50 was 0.30 mg Ni/L (confidence limits not calculatable). The present data reveals the importance of testing metal effects in combination before establishing safe limits for marine invertebrates.
显示更多 [+] 显示较少 [-]An interval two-stage fuzzy fractional programming model for planning water resources management in the coastal region – A case study of Shenzhen, China 全文
2022
Li, Xiaoyang | Huang, Guohe | Wang, Shuguang | Li, Yongping | Zhang, Xiaoyue | Zhou, Xiong
In this study, an interval two-stage fuzzy fractional programming (TFFP) method is developed to facilitate collaborative governance of economy and water resources. Methods of interval programming, fuzzy programming, two-stage programming, and fractional programming are integrated within a general system optimization framework. The main contribution of TFFP is simultaneously addressing various uncertainties and tackling trade-offs between environmental and economic objectives in the optimized schemes for water resources allocation. A case study of a highly urbanized coastal city (i.e., Shenzhen) in China is provided as an example for demonstrating the proposed approach. According to the results, industrial sectors should receive 34.8% of total water supply, while agricultural sectors should receive 1.5%. For the spatial allocation of water resources, Bao An, Long Gang, and Fu Tian districts should be allocated 21.6%, 20.5%, and 14.8% water to promote the economic development. The discharge analysis indicates that chemical oxygen demand (CODcᵣ) and total phosphorus (TP) would be key pollutants. Moreover, the optimized seawater desalination volume would be negligibly influenced by price, while the upper bounds of desalination would be increased with the raising acceptable credibility levels in the period of 2031–2035. Analysis of desalination prices also reveals that the decision-makers should increase the scale of desalination in the period of 2021–2025. In addition, the effectiveness and applicability of TFFP would be evaluated under economic maximization scenarios. The result showed that the economic maximization scenario could obtain higher economic benefits, but it would be accompanied by a larger number of pollutant discharges. It is expected that this study will provide solid bases for planning water resources management systems in coastal regions.
显示更多 [+] 显示较少 [-]Acute exposure to perfluorooctane sulfonate exacerbates heat-induced oxidative stress in a tropical coral species 全文
2022
Bednarz, V.N. | Choyke, S. | Marangoni, L.F.B. | Otto, E.I. | Béraud, E. | Metian, M. | Tolosa, I. | Ferrier-Pagès, C.
Perfluorooctane sulfonate (PFOS) is among the most commonly per- and poly-fluoroalkyl substances (PFAS) found in environmental samples. Nevertheless, the effect of this legacy persistent organic contaminant has never been investigated on corals to date. Corals are the keystone organisms of coral reef ecosystems and sensitive to rising ocean temperatures, but it is not understood how the combination of elevated temperature and PFOS exposure will affect them. Therefore, the aims of the present study were (1) to evaluate the time-dependent bioconcentration and depuration of PFOS in the scleractinian coral Stylophora pistillata using a range of PFOS exposure concentrations, and (2) to assess the individual and combined effects of PFOS exposure and elevated seawater temperature on key physiological parameters of the corals. Our results show that the coral S. pistillata rapidly bioconcentrates PFOS from the seawater and eliminates it 14 days after ceasing the exposure. We also observed an antagonistic effect between elevated temperature and PFOS exposure. Indeed, a significantly reduced PFOS bioconcentration was observed at high temperature, likely due to a loss of symbionts and a higher removal of mucus compared to ambient temperature. Finally, concentrations of PFOS consistent with ranges observed in surface waters were non-lethal to corals, in the absence of other stressors. However, PFOS increased lipid peroxidation in coral tissue, which is an indicator of oxidative stress and enhanced the thermal stress-induced impairment of coral physiology. This study provides valuable insights into the combined effects of PFOS exposure and ocean warming for coral's physiology. PFOS is usually the most prevalent but not the only PFAS defected in reef waters, and thus it will be also important to monitor PFAS mixture concentrations in the oceans and to study their combined effects on aquatic wildlife.
显示更多 [+] 显示较少 [-]Occurrence and environmental hazard of organic UV filters in seawater and wastewater from Gran Canaria Island (Canary Islands, Spain) 全文
2022
Cadena-Aizaga, M Isabel | Montesdeoca-Esponda, Sarah | Sosa-Ferrera, Zoraida | Santana-Rodríguez, José Juan
Organic ultraviolet (UV) filters are used in personal care products, but they are also added to industrial products and are constantly released to the environment. This study analyses the occurrence of 8 widely used organic UV filters in seawater from three beaches on the Gran Canaria Island (Spain) and in three wastewater treatment plants (WWTPs) by taking samples from influents and effluents. It also discusses the target compounds’ post-treatment removal efficiencies. Sampling was carried out for 6 months and analytes were extracted by solid phase extraction with Sep-pak C18 cartridges. They were determined by ultra-high performance liquid chromatography coupled to mass spectrometry in tandem. The potential environmental hazard associated with the found concentrations was also assessed for marine organisms. Different target compounds were detected on the analysed beaches and in the wastewater. Benzophenone-3 (BP3) was the most recurrent compound in the seawater samples (frequency detection of 83%) and also in wastewater influents and effluents (measured in all the samples). However, the highest concentrations for seawater (172 μg L⁻¹) and influent wastewater (208 μg L⁻¹) corresponded to octocrylene, while methylene bis-benzotriazolyltetramethylbutylphenol was the compound most concentrated in secondary treatment effluent (34.0 μg L⁻¹) and BP3 in tertiary treatment effluent (8.07 μg L⁻¹). All the analysed samples showed that at least one target UV filter was present. Regarding the removal efficiencies of these compounds in the studied WWTPs, consistent differences between the target compounds were observed in influent concentration terms, where the average removal rates were higher than 50% for most of the compounds. Conventional treatment is unable to completely remove many studied compounds, while tertiary treatment acts as an additional elimination for some of them. An environmental hazard quotient above 1 was found for octocrylene, benzophenone-3 and 4-methylbenzylidene camphor, which indicates a potential high hazard for living species if these compounds are present.
显示更多 [+] 显示较少 [-]Time-series incubations in a coastal environment illuminates the importance of early colonizers and the complexity of bacterial biofilm dynamics on marine plastics 全文
2022
Lemonnier, C. | Chalopin, M. | Huvet, A. | Le Roux, F. | Labreuche, Y. | Petton, B. | Maignien, L. | Paul-Pont, I. | Reveillaud, J.
Time-series incubations in a coastal environment illuminates the importance of early colonizers and the complexity of bacterial biofilm dynamics on marine plastics 全文
2022
Lemonnier, C. | Chalopin, M. | Huvet, A. | Le Roux, F. | Labreuche, Y. | Petton, B. | Maignien, L. | Paul-Pont, I. | Reveillaud, J.
The problematic of microplastics pollution in the marine environment is tightly linked to their colonization by a wide diversity of microorganisms, the so-called plastisphere. The composition of the plastisphere relies on a complex combination of multiple factors including the surrounding environment, the time of incubation along with the polymer type, making it difficult to understand how the biofilm evolves during the microplastic lifetime over the oceans. To better define bacterial community assembly processes on plastics, we performed a 5 months spatio-temporal survey of the plastisphere in an oyster farming area in the Bay of Brest (France). We deployed three types of plastic pellets in two positions in the foreshore and in the water column. Plastic-associated biofilm composition in all these conditions was monitored using 16 S rRNA metabarcoding and compared to free-living and attached bacterial members of seawater. We observed that bacterial families associated to plastic pellets were significantly distinct from the ones found in seawater, with a significant prevalence of filamentous Cyanobacteria on plastics. No convergence towards a unique plastisphere was detected between polymers exposed in the intertidal and subtidal area, emphasizing the central role of the surrounding environment on constantly shaping the plastisphere community diversity. However, we could define a bulk of early-colonizers of marine biofilms such as Alteromonas, Pseudoalteromonas or Vibrio. These early-colonizers could reach high abundances in floating microplastics collected in field-sampling studies, suggesting the plastic-associated biofilms could remain at early development stages across large oceanic scales. Our study raises the hypothesis that most members of the plastisphere, including putative pathogens, could result of opportunistic colonization processes and unlikely long-term transport.
显示更多 [+] 显示较少 [-]Time-series incubations in a coastal environment illuminates the importance of early colonizers and the complexity of bacterial biofilm dynamics on marine plastics 全文
2022
Lemonnier, C. | Chalopin, Morgane | Huvet, Arnaud | Le Roux, Frederique | Labreuche, Yannick | Petton, Bruno | Maignien, Lois | Paul-pont, Ika | Reveillaud, J.
The problematic of microplastics pollution in the marine environment is tightly linked to their colonization by a wide diversity of microorganisms, the so-called plastisphere. The composition of the plastisphere relies on a complex combination of multiple factors including the surrounding environment, the time of incubation along with the polymer type, making it difficult to understand how the biofilm evolves during the microplastic lifetime over the oceans. To better define bacterial community assembly processes on plastics, we performed a 5 months spatio-temporal survey of the plastisphere in an oyster farming area in the Bay of Brest (France). We deployed three types of plastic pellets in two positions in the foreshore and in the water column. Plastic-associated biofilm composition in all these conditions was monitored using 16 S rRNA metabarcoding and compared to free-living and attached bacterial members of seawater. We observed that bacterial families associated to plastic pellets were significantly distinct from the ones found in seawater, with a significant prevalence of filamentous Cyanobacteria on plastics. No convergence towards a unique plastisphere was detected between polymers exposed in the intertidal and subtidal area, emphasizing the central role of the surrounding environment on constantly shaping the plastisphere community diversity. However, we could define a bulk of early-colonizers of marine biofilms such as Alteromonas, Pseudoalteromonas or Vibrio. These early-colonizers could reach high abundances in floating microplastics collected in field-sampling studies, suggesting the plastic-associated biofilms could remain at early development stages across large oceanic scales. Our study raises the hypothesis that most members of the plastisphere, including putative pathogens, could result of opportunistic colonization processes and unlikely long-term transport.
显示更多 [+] 显示较少 [-]Metagenomic insights into the antibiotic resistome in freshwater and seawater from an Antarctic ice-free area 全文
2022
Zhang, Tao | Ji, Zhongqiang | Li, Jun | Yu, Liyan
The comprehensive profiles of antibiotic resistance genes (ARGs) in the Antarctic water environments and their potential health risks are not well understood. The present study characterized the bacterial community compositions and ARG profiles of freshwater (11 samples) and seawater (28 samples) around the Fildes Region (an ice-free area in Antarctica) using a shotgun metagenomic sequencing approach for the first time. There were significant differences in the compositions of the bacterial community and ARG profiles between freshwater and seawater. In the 39 water samples, 114 ARG subtypes belonging to 15 ARG types were detectable. In freshwater, the dominant ARGs were related to multidrug and rifamycin resistance. In seawater, the dominant ARGs were related to peptide, multidrug, and beta-lactam resistance. Both the bacterial community compositions and ARG profiles were significantly related to certain physicochemical properties (e.g., pH, salinity, NO₃⁻). Procrustes analysis revealed a significant correlation between the bacterial community compositions and ARG profiles of freshwater and seawater samples. A total of 31 metagenome-assembled genomes (MAGs) carrying 35 ARG subtypes were obtained and identified. The results will contribute to a better evaluation of the ARG contamination in relation to human health in the Antarctic aquatic environments.
显示更多 [+] 显示较少 [-]