细化搜索
结果 1-10 的 35
Effects-based monitoring of bioactive compounds associated with municipal wastewater treatment plant effluent discharge to the South Platte River, Colorado, USA
2021
Cavallin, Jenna E. | Beihoffer, Jon | Blackwell, Brett R. | Cole, Alexander R. | Ekman, Drew R. | Hofer, Rachel | Jastrow, Aaron | Kinsey, Julie | Keteles, Kristen | Maloney, Erin M. | Parman, Jordan | Winkelman, Dana L. | Villeneuve, Daniel L.
Previous studies have detected numerous organic contaminants and in vitro bioactivities in surface water from the South Platte River near Denver, Colorado, USA. To evaluate the temporal and spatial distribution of selected contaminants of emerging concern, water samples were collected throughout 2018 and 2019 at 11 sites within the S. Platte River and surrounding tributaries with varying proximities to a major wastewater treatment plant (WWTP). Water samples were analyzed for pharmaceuticals, pesticides, steroid hormones, and wastewater indicators and screened for in vitro biological activities. Multiplexed, in vitro assays that simultaneously screen for agonistic activity against 24 human nuclear receptors detected estrogen receptor (ER), peroxisome proliferator activated receptor-gamma (PPARγ), and glucocorticoid receptor (GR) bioactivities in water samples near the WWTP outflow. Targeted in vitro bioassays assessing ER, GR, and PPARγ agonism corroborated bioactivities for ER (up to 55 ± 9.7 ng/L 17β-estradiol equivalents) and GR (up to 156 ± 28 ng/L dexamethasone equivalents), while PPARγ activity was not confirmed. To evaluate the potential in vivo significance of the bioactive contaminants, sexually-mature fathead minnows were caged at six locations upstream and downstream of the WWTP for 5 days after which targeted gene expression analyses were performed. Significant up-regulation of male hepatic vitellogenin was observed at sites with corresponding in vitro ER activity. No site-related differences in GR-related transcript abundance were detected in female adipose or male livers, suggesting observed environmental concentrations of GR-active contaminants do not induce a detectable in vivo response. In line with the lack of detectable targeted in vitro PPARɣ activity, there were no significant effects on PPARɣ-related gene expression. Although the chemicals responsible for GR and PPAR-mediated bioactivities are unknown, results from the present study provide insights into the significance (or lack thereof) of these bioactivities relative to short-term in situ fish exposures.
显示更多 [+] 显示较少 [-]Hypoxia modifies the response to flutamide and linuron in male three-spined stickleback (Gasterosteus aculeatus)
2020
Fitzgerald, Jennifer A. | Trznadel, Maciej | Katsiadaki, Ioanna | Santos, Eduarda M.
Hypoxia is a major stressor in aquatic environments and it is frequently linked with excess nutrients resulting from sewage effluent discharges and agricultural runoff, which often also contain complex mixtures of chemicals. Despite this, interactions between hypoxia and chemical toxicity are poorly understood. We exposed male three-spined stickleback during the onset of sexual maturation to a model anti-androgen (flutamide; 250 μg/L) and a pesticide with anti-androgenic activity (linuron; 250 μg/L), under either 97% or 56% air saturation (AS). We assessed the effects of each chemical, alone and in combination with reduced oxygen concentration, by measuring the transcription of spiggin in the kidney, as a marker of androgen signalling, and 11 genes in the liver involved in some of the molecular pathways hypothesised to be affected by the exposures. Spiggin transcription was strongly inhibited by flutamide under both AS conditions. In contrast, for linuron, a strong inhibition of spiggin was observed under 97% AS, but this effect was supressed under reduced air saturation, likely due to interactions between the hypoxia inducible factor and the aryl hydrocarbon receptor (AhR) pathways. In the liver, hypoxia inducible factor 1α was induced following exposure to both flutamide and linuron, however this was independent of the level of air saturation. This work illustrates the potential for interactions between hypoxia and pollutants with endocrine or AhR agonist activity to occur, with implications for risk assessment and management.
显示更多 [+] 显示较少 [-]Glyphosate-based herbicides influence antioxidants, reproductive hormones and gut microbiome but not reproduction: A long-term experiment in an avian model
2020
Ruuskanen, Suvi | Rainio, Miia J. | Gómez-Gallego, Carlos | Selenius, Otto | Salminen, Seppo | Collado, Maria Carmen | Saikkonen, Kari | Saloniemi, Irma | Helander, Marjo
Controversial glyphosate-based herbicides (GBHs) are the most frequently used herbicides globally. GBH residues in the wild, in animal and human food may expose non-target organisms to health risks, yet the developmental and cumulative effects of GBHs on physiology and reproduction remain poorly understood. We present the first long-term study on the effects of subtoxic GBH exposure (160 mg/kg) on multiple key physiological biomarkers (cellular oxidative status and neurotransmitters), gut microbiome, reproductive hormones, and reproduction in an avian model. We experimentally exposed in Japanese quail females and males (Coturnix japonica) to GBHs and respective controls from the age of 10 days–52 weeks. GBH exposure decreased hepatic activity of an intracellular antioxidant enzyme (catalase), independent of sex, but did not influence other intracellular oxidative stress biomarkers or neurotransmitter enzyme (acetylcholinesterase). GBH exposure altered overall gut microbiome composition, especially at a younger age and in females, and suppressed potentially beneficial microbes at an early age. Many of the microbial groups increased in frequency from 12 to 28 weeks under GBH exposure. GBH exposure decreased male testosterone levels both at sexual maturity and at 52 weeks of exposure, but did not clearly influence reproduction in either sex (maturation, testis size or egg production). Future studies are needed to characterize the effects on reproductive physiology in more detail. Our results suggest that cumulative GBH exposure may influence health and reproduction-related traits, which is important in predicting their effects on wild populations and global poultry industry.
显示更多 [+] 显示较少 [-]Short-term exposure to benzo[a]pyrene causes oxidative damage and affects haemolymph steroid levels in female crab Portunus trituberculatus
2016
Wen, Jianmin | Pan, Luqing
Concern has increased regarding the adverse effects of polycyclic aromatic hydrocarbons (PAHs) on reproduction. However, limited information is available on the effects of PAHs in crustacean. In order to determine whether benzo[a]pyrene (B[a]P) could cause reproductive toxicity on the swimming crab Portunus trituberculatus, sexually mature female crabs were exposed to environmentally relevant concentrations of B[a]P (0, 0.1, 0.5 and 2.5 μg/L) for 10 days. B[a]P treatments resulted in high accumulation in ovary, and induced oxidative stress in a dose-dependent manner on ovary of crab. Furthermore, the haemolymph estradiol (E2) and testosterone (T) levels were significantly decreased. Histological investigation also revealed the reproductive toxicity caused by B[a]P. The results demonstrated that waterborne exposure to B[a]P caused oxidative damage and disrupted sex steroids in female crab P. trituberculatus, ultimately resulting in histological alternation.
显示更多 [+] 显示较少 [-]Transgenerational metabolic disorders and reproduction defects induced by benzo[a]pyrene in Xenopus tropicalis
2021
Usal, Marie | Veyrenc, Sylvie | Darracq--Ghitalla-Ciock, Marie | Regnault, Christophe | Sroda, Sophie | Fini, Jean-Baptiste | Canlet, Cécile | Tremblay-Franco, Marie | Raveton, Muriel | Reynaud, Stéphane
Metabolic disorders induced by endocrine disruptors (ED) may contribute to amphibian population declines but no transgenerational studies have evaluated this hypothesis. Here we show that Xenopus tropicalis, exposed from the tadpole stage, to the ED benzo[a]pyrene (BaP, 50 ng.L⁻¹) produced F2 progeny with delayed metamorphosis and sexual maturity. At the adult stage, F2–BaP females displayed fatty liver with inflammation, tissue disorganization and metabolomic and transcriptomic signatures typical of nonalcoholic steato-hepatitis (NASH). This phenotype, similar to that observed in F0 and F1 females, was accompanied by a pancreatic insulin secretory defect. Metabolic disrupted F2–BaP females laid eggs with metabolite contents significantly different from the control and these eggs did not produce viable progeny. This study demonstrated that an ED can induce transgenerational disruption of metabolism and population collapse in amphibians under laboratory conditions. These results show that ED benzo[a]pyrene can impact metabolism over multiple generations and support epidemiological studies implicating environmental EDs in metabolic diseases in humans.
显示更多 [+] 显示较少 [-]Endocrine disrupting effects of tebuconazole on different life stages of zebrafish (Danio rerio)
2019
Li, Shuying | Sun, Qianqian | Wu, Qiong | Gui, Wenjun | Zhu, Guonian | Schlenk, Daniel
Tebuconazole is a widely used fungicide that has been detected in water ecosystems, of which the concentrations may affect the endocrine function of aquatic organisms. At present study, tissue-specific bioaccumulation of tebuconazole was found in ovary of adult zebrafish, indicating a potential risk of endocrine disruption. In order to evaluate the potential endocrine disrupting effects, three life stages (2 hpf (hours post-fertilization) −60 dpf (days post-fertilization), Stage I; 60–120 dpf, Stage II; 180–208 dpf, Stage III) of zebrafish (Danio rerio) were chronically exposed to tebuconazole at the concentrations ranging from 0.05 mg/L to 1.84 mg/L. Result showed that exposed to tebuconazole could lead to a male-biased sex differentiation in juvenile zebrafish and significant decrease of the percentage of germ cells in sexually-mature zebrafish. Egg production was significantly inhibited by 57.8% and 19.2% after Stage II- and Stage III-exposures, respectively. The contents of 17β-estradiol in gonad decreased by 63.5% when exposed to 0.20 mg/L tebuconazole at Stage II and by 49.5% after exposed to 0.18 mg/L tebuconazole at Stage III, respectively. For all stages exposure, reductions in 17β-estradiol/testosterone ratio were observed, indicating an imbalance in steroids synthesis. Additionally, tebuconazole reduced the expression of cyp19a, which was consistent with the decrease of E2 level. In overall, the present findings indicated that, playing as an anti-estrogen-like chemical, tebuconazole inhibited the expression of Cyp19, thereby impairing steroid hormones biosynthesis, leading to a diminished fecundity of zebrafish.
显示更多 [+] 显示较少 [-]Total mercury concentrations in liver and muscle of European whitefish (Coregonus lavaretus (L.)) in a subarctic lake - Assessing the factors driving year-round variation
2017
Keva, Ossi | Hayden, Brian | Harrod, Chris | Kahilainen, Kimmo K.
Subarctic lakes are characterised by extreme seasonal variation in light and temperature which influences growth, maturation, condition and resource use of fishes. However, our understanding of how seasonal changes affect mercury concentrations of fishes is limited. We conducted a year-round study (3 ice-covered months, 3 open-water months) with open-water inter-annual aspect (3 years: samples from August/September), focusing on total mercury (THg) concentrations and ecological characteristics of a common freshwater fish, European whitefish (Coregonus lavaretus (L.)) from a subarctic lake. We measured THg concentrations from tissues with fast (liver, n = 164) and moderate (muscle, n = 225) turnover rates, providing information on THg dynamics over different temporal scales. In both tissues, lipid-corrected THg concentrations were highest in winter (liver: 1.70 ± 0.88 μg/g, muscle: 0.24 ± 0.05 μg/g) and lowest in summer (liver: 0.87 ± 0.72 μg/g, muscle: 0.19 ± 0.04 μg/g). THg concentrations increased in winter following the summer-autumn dietary shift to pelagic zooplankton and starvation after spawning. Whitefish THg concentrations decreased towards summer, and were associated with consumption of benthic macroinvertebrates and subsequent growth dilution. Mercury bioaccumulated in both tissues with age, both showing the strongest regression slopes in winter and lowest in summer. THg concentrations in liver and muscle tissue were correlated throughout the year, however the correlation was lowest in summer, indicating high metabolism during somatic growing season in summer and growth dilution. Multiple linear regression models explained 50% and 55% of the THg variation in liver and muscle both models dominated by seasonally-variable factors i.e. sexual maturity, δ13C, and condition factor. Seasonally varying bioaccumulation slopes and the higher level of intra-annual variation (21%) in whitefish THg concentration in muscle than the inter-annual accumulation (8%) highlight the importance of including seasonal factors in future THg studies.
显示更多 [+] 显示较少 [-]Effects of waterborne exposure to environmentally relevant concentrations of selenite on reproductive function of female zebrafish: A life cycle assessment
2021
Mo, Aijie | Wang, Xiaolin | Yuan, Yongchao | Liu, Chunsheng | Wang, Jianghua
Recently, bioaccumulation of dietary organic selenium (Se) in the ovaries and inhibition of reproduction in female aquatic animals have been reported. However, there is limited data on the subtle reproductive impacts of waterborne exposure to inorganic Se in fish. Here, zebrafish embryos (2 h post-fertilization) were exposed to solutions with environmentally relevant levels of Na₂SeO₃ with concentrations of 0 (control), 7.98 ± 0.31, 25.14 ± 0.15, and 79.60 ± 0.81 μg Se/L for 120 d until they reached sexual maturity. Female zebrafish were selected for reproductive toxicity assessment. In the early embryonic stage, whole-mount in situ hybridization of zebrafish embryos showed that waterborne Na₂SeO₃ exposure did not affect the observed location of vasa expression in primordial germ cells at 24, 48, and 72 h post-fertilization. Life-cycle exposure to 25.14 ± 0.15 and 79.60 ± 0.81 μg Se/L Na₂SeO₃ did not change the testosterone and 17β-estradiol contents in female zebrafish at the endpoint of exposure, but significantly reduced the proportion of early vitellogenic oocytes and mature oocytes. Follicle maturity retardation was accompanied by changes in transcriptional levels of the genes related to the hypothalamus-pituitary-gonad-liver (HPGL) axis. Transcriptional levels of cyp19a and lhr in the ovary were down-regulated, while the transcriptional level of fshr in the ovaries was up-regulated. In the 21-day cumulative spawning experiment, Na₂SeO₃ (25.14 ± 0.15 and 79.60 ± 0.81 μg Se/L) caused fewer eggs to be produced. Additionally, the malformation of zebrafish offspring significantly increased in the group exposed to 79.60 ± 0.81 μg Se/L. In conclusion, for the first time, this study shows that life-cycle exposure to environmentally relevant concentrations of waterborne Na₂SeO₃ significantly delays ovarian maturation and reduces the fertility of the female zebrafish.
显示更多 [+] 显示较少 [-]n-Butylparaben exposure through gestation and lactation impairs spermatogenesis and steroidogenesis causing reduced fertility in the F1 generation male rats
2020
Maske, Priyanka | Dighe, Vikas | Mote, Chandrashekhar | Vanage, Geeta
Parabens are class of preservatives used in vast majority of commercial products, and a potential Endocrine Disrupting Chemical (EDC). The present study was undertaken to delineate the effects of n-butylparaben on F1 male progeny exposed maternally through gestation and lactation via subcutaneous route. The F0 dams were given subcutaneous injections of n-butylparaben from gestation day (GD) 6 to postnatal day (PND) 21 with doses of 10, 100, 1000 mg/kg Bw/day in corn oil. The F1 male rats were monitored for pubertal development and sexual maturation; these were sacrificed on PND 30, 45 and 75. On PND 75, these F1 male rats were subjected for fertility assessment with unexposed female rats.A delayed testicular descent at 100 and 1000 mg/kg Bw dose and delayed preputial separation at 10 mg/kg Bw dose was observed in exposed F1 male rats. Decreased sperm count, motility and Daily Sperm Production was observed at 100 mg/kg Bw dose at PND 75. Interestingly, the sperm transit time in the epididymis was accelerated at this dose. Significant perturbed testicular expression of steroid receptors (ERα and β, AR), INSL3 and StAR genes with increased T and LH levels indicates direct effect on spermatogenesis and steroidogenesis. These F1 generation adult rats were sub-fertile with increased (%) pre- and post-implantation loss at 100 and 1000 mg/kg Bw/day dose. This is the first report on n-butylparaben highlighting the involvement of testicular leydig cells with accelerated sperm transit time leading to reduced fertility in the maternally exposed F1 male rats through estrogenic/anti-androgenic action.
显示更多 [+] 显示较少 [-]Lifecycle exposure to perchlorate differentially alters morphology, biochemistry, and transcription as well as sperm motility in Silurana tropicalis frogs
2018
Campbell, Diana E.K. | Montgomerie, Robert D. | Langlois, Valérie S.
Perchlorate (ClO4−) contamination has been reported in ground and surface waters across North America. However, few studies have examined the effects of prolonged exposure to this thyroid hormone disrupting chemical, particularly at environmentally relevant concentrations in lower vertebrates, such as amphibians. The aim of this study was to examine the effects of a yearlong chronic exposure to ClO4− in adult male and female Western clawed frogs (Silurana tropicalis). Frogs were spawned and raised from fertilized embryo until sexual maturity in potassium perchlorate (KClO4)-treated water at different concentrations (0, 20, 53, and 107 μg/L). Developmental and reproductive indices – including adult morphology, androgen plasma levels, gonadal thyroid hormone- and sex steroid-related transcript levels, and sperm motility – were evaluated in male and female adult frogs. Female growth (e.g., body mass, snout-vent length, and hind limb length) was significantly reduced following chronic exposure to environmentally relevant concentrations of KClO4 resulting in females with morphometric indices similar to those of control males – indicating potential sex-specific sensitivities to KClO4. Changes to reproductive indices (i.e., plasma androgen levels, gonadal thyroid hormone- and sex steroid-related transcript levels, and sperm motility) were also observed in both sexes and suggest that KClO4 exposure may also have indirect secondary effects on the reproductive axes in male and female adult frogs. These effects were observed at concentrations at or below those reported in surface waters contaminated with ClO4− suggesting that this contaminant may have developmental and reproductive effects post-metamorphosis in natural amphibian populations.
显示更多 [+] 显示较少 [-]