细化搜索
结果 1-10 的 30
Enzyme assays and toxicity of pig abattoir waste in Eisenia andrei
2020
Ramires, Maiara Figueiredo | Lorensi de Souza, Eduardo | de Castro Vasconcelos, Márlon | Clasen, Bárbara Estevão | Fontanive, Daniel Erison | Bianchetto, Renan | Grasel Cezimbra, Júlio Cesar | Antoniolli, Zaida Inês
Due to high global demand, large amounts of abbattoir waste are generated from pork production. Mismanagement of abattoir waste on agricultural lands can result in soil and water contamination with pathogens and contaminants like metals and nutrients. Therefore, possible effects on soil organisms prior to application should be evaluated. Thus, the aim of this study was to determine the effects of fresh pig abattoir waste (PAWf) and waste after stabilization processes on E. andrei through tests of avoidance behavior, acute toxicity and chronic toxicity. In order to do this, the waste was evaluated fresh (i.e., non-treated), and after aerated composting (PAWa), natural composting (PAWn) and vermicomposting (PAWv). In addition, we used a natural soil with no history of agricultural use as control soil. The evaluation was based on avoidance behavior, mortality, initial and final earthworm weight, and reproduction, in addition to a set of enzyme assays formed by acetylcholinesterase, lipid peroxidation, catalase and glutathione S-transferase measured over time. The ecotoxicological results showed that PAWf and PAWa increased AChE activity at different experimental periods, while PAWn decreased activity at 14 days compared to the control. PAWf and PAWa increased TBARS levels at 7 and 14 days, respectively. CAT activity decreased at 3, 7 and 14 days in PAWv, while GST activity increased at 3 days in PAWa and at 3 and 14 days in PAWf compared to the control. In the acute toxicity test, PAWa and PAWn had a toxic effect on E. andrei, resulting in 100% mortality at 14 days of exposure. Based on our findings, pig abattoir waste should undergo vermicomposting prior to agricultural application to soils.
显示更多 [+] 显示较少 [-]Determination of antibiotics in sewage from hospitals, nursery and slaughter house, wastewater treatment plant and source water in Chongqing region of Three Gorge Reservoir in China
2010
Chang, Xiaosong | Meyer, Michael T. | Liu, Xiaoyun | Zhao, Qing | Chen, Hao | Chen, Ji-an | Qiu, Zhiqun | Yang, Lan | Cao, Jia | Shu, Weiqun
Sewage samples from 4 hospitals, 1 nursery, 1 slaughter house, 1 wastewater treatment plant and 5 source water samples of Chongqing region of Three Gorge Reservoir were analyzed for macrolide, lincosamide, trimethoprim, fluorouinolone, sulfonamide and tetracycline antibiotics by online solid-phase extraction and liquid chromatography-tandem mass spectrometry. Results showed that the concentration of ofloxacin (OFX) in hospital was the highest among all water environments ranged from 1.660 μg/L to 4.240 μg/L and norfloxacin (NOR, 0.136-1.620 μg/L), ciproflaxacin (CIP, ranged from 0.011 μg/L to 0.136 μg/L), trimethoprim (TMP, 0.061-0.174 μg/L) were commonly detected. Removal range of antibiotics in the wastewater treatment plant was 18–100% and the removal ratio of tylosin, oxytetracycline and tetracycline were 100%. Relatively higher removal efficiencies were observed for tylosin (TYL), oxytetracycline (OXY) and tetracycline (TET)(100%), while lower removal efficiencies were observed for Trimethoprim (TMP, 1%), Epi-iso-chlorotetracycline (EICIC, 18%) and Erythromycin-H2O (ERY-H2O, 24%). Antibiotics were removed more efficiently in primary treatment compared with those in secondary treatment.
显示更多 [+] 显示较少 [-]Biochemical potential evaluation and kinetic modeling of methane production from six agro-industrial wastewaters in mixed culture
2021
Sales Morais, Naassom Wagner | Coelho, Milena Maciel Holanda | Silva, Amanda de Sousa e | Silva, Francisco Schiavon Souza | Ferreira, Tasso Jorge Tavares | Pereira, Erlon Lopes | dos Santos, André Bezerra
Methane (CH₄) production from anaerobic digestion of solid and liquid agro-industrial wastes is an attractive strategy to meet the growing need for renewable energy sources and promote environmentally appropriate disposal of organic wastes. This work aimed at determining the CH₄ production potential of six agro-industrial wastewaters (AWW), evaluating the most promising for methanization purposes. It also aims to provide kinetic parameters and stoichiometric coefficients of CH₄ production and define which kinetic models are most suitable for simulating the CH₄ production of the evaluated substrates. The AWW studied were swine wastewater (SW), slaughterhouse wastewater (SHW), dairy wastewater (DW), brewery wastewater (BW), fruit processing wastewater (FPW), and residual glycerol (RG) of biodiesel production. RG was the substrate that showed the highest methanization potential. Exponential kinetic models can be efficiently applied for describing CH₄ production of more soluble substrates. On the other hand, logistic models were more suitable to predict the CH₄ production of more complex substrates.
显示更多 [+] 显示较少 [-]An epifluorescence-based technique accelerates risk assessment of aggregated bacterial communities in carcass and environment
2020
Mahmoud, M.A.M. | Zaki, R.S. | Abd- Elhafeez, H.H.
The severe and pervasive effects of multispecies foodborne microbial biofilms highlight the importance of rapid detection and diagnosis of contamination risk in the field using epifluorescence-based techniques (EBT) combined with automatic image-counting software. This study screened the hygiene quality of the environment, the carcass and the slaughtering equipment in the El-Kharga abattoir, New Valley Province, Egypt, to assess possible contamination during slaughter process. In addition, biofilm was assessed, and bacteria was enumerated by epifluorescence microscopy. Using both conventional and EBT, the highest bacterial counts were observed for the slaughtering equipment (6.6 and 5.2 cfu/cm2, respectively), followed by different parts of the carcass (4.1 and 4.4 cfu/cm2, respectively) and environmental samples (3.9 and 4.1 cfu/cm2, respectively). A high prevalence of E. coli O157:H7 was observed on the slaughtering equipment (25%), which also led to carcass (1%) contamination. Moreover, Enterobacteriaceae members were detected during examination, such as Klebsiella pneumoniae, Enterobacter aerogenes, and Raoultella ornithinolytica. Despite the relatively good hygiene quality of the abattoir environment, there is also a high risk associated with biofilm formation by pathogenic microorganisms on the slaughtering equipment. Moreover, EBT showed different structures of the biofilm, including those formed at different maturation stages, such as voids, microbubbles, channels and mushroom shapes. (EBT) microscopy combined with image-counting software could be a candidate substitute to estimate efficiently, precisely and rapidly the microbial aggregation and exposure risk in field than the conventional counting techniques.
显示更多 [+] 显示较少 [-]Slaughterhouse wastewater treatment using an advanced oxidation process: Optimization study
2017
Davarnejad, Reza | Nasiri, Samaneh
In this paper, a poultry slaughterhouse wastewater (PSW) was treated in terms of chemical oxygen demand (COD) and color reduction using electro-Fenton (EF) technique under response surface methodology (RSM). The effects of five significant independent variables such as reaction time, pH, H2O2/Fe2+ molar ratio, current density, volume ratio of H2O2/PSW (ml/l) were investigated on the COD and color removal. Experimental data were optimized by Box-Behnken design (BBD) and RSM. The optimum conditions were experimentally found at pH of 4.38, reaction time of 55.60 min, H2O2/Fe2+ molar ratio of 3.73, current density of 74.07 mA/cm2, volume ratio of H2O2/PSW of 1.63 ml/l for 92.37%COD removal and at pH of 3.39, reaction time of 49.22 min, H2O2/Fe2+ molar ratio of 3.62, current density of 67.90 mA/cm2, volume ratio of H2O2/PSW of 1.44 ml/l for 88.06% color removal.
显示更多 [+] 显示较少 [-]Anaerobic treatment of slaughterhouse wastewater: a review
2021
Shende, Akshay D. | Pophali, Girish R.
This article presents a review of anaerobic treatment technologies to treat slaughterhouse wastewater including its advantages and disadvantages. Physico-chemical characteristics and biochemical methane potential (BMP) of slaughterhouse wastewater are addressed. Various anaerobic treatment technologies are presented with the related operating parameters, viz., hydraulic retention time (HRT), organic loading rate (OLR), upflow velocity (Vᵤₚ), and biogas yield vis-a-vis treatment efficiency in terms of chemical oxygen demand (COD). In addition, various factors that affect the anaerobic treatment of slaughterhouse wastewater such as high oil & grease (O & G) concentration in influent, inhibitors, volatile fatty acids (VFAs), and the loading rate are also addressed. The literature review indicated that the slaughterhouse wastewater can be treated effectively by employing any anaerobic treatment technologies at OLRs up to 5 kg COD/m³.d with more than 80% COD removal efficiency without experiencing operational problems. Anaerobic hybrid reactors (AHRs) were found the most effective among various reviewed technologies because of their ability to operate at higher OLRs (8 to 20 kg COD/m³.d) and lower HRTs (8 to 12 hrs).
显示更多 [+] 显示较少 [-]Wastewater Management from Slaughterhouse—A New Approach to Control Mosquitoes
2012
Poopathi, Subbiah | Archana, Balaraman
Slaughterhouse waste water (SHW) is discarded as unused disposals into the environment every day. The objective of the present study is to explore the possibility on the utilization of SHW for the preparation of culture media to produce mosquitocidal bacterium (Bacillus thuringiensis subsp. israelensis). This would help to overcome the problem of dumping SHW in to environment. A judicial combination of SHW with a mineral salt (MnCl2) was made to produce an enhanced level of bacterial production when compared with other culture media including conventional medium (Luria Bertani, LB). A complete degradation of SHW by the bacteria was observed. The biomass yield, bacterial growth, toxin production, and larvicidal activity against mosquito vectors were satisfactory. Cell mass yield of 4.55 gm l−1 (dry wt) and larvicidal activity of 0.006 mg ml−1 and 0.026 mg ml−1 at LC50 and LC90 levels were observed, respectively, against the filarial vector of Culex quinquefasciatus with bacteria grown in SHWâ+âMnCl2. The B. thuringiensis subsp. israelensis also controlled the larvae in the field significantly for three weeks (>90% mortality) and the effect was comparable with LB. Cost-analysis for production of B. thuringiensis subsp. israelensis showed that it is more economical. Thus, this study suggested the dual benefit of efficient production of mosquitocidal toxin and management of slaughterhouse wastewater.
显示更多 [+] 显示较少 [-]Beneficial use of animal hides for abattoir and tannery waste management: a review of unconventional, innovative, and sustainable approaches
2022
Patel, Kaivalya | Munir, Dureem | Santos, Rafael M.
The art of using animal hides, an apparent waste from the meat processing industry, goes back to the dawn of humanity and was highly demanded for leather manufacturing. In Ontario (Canada), small- and medium-sized abattoirs process all together approximately 300,000 sheep and 100,000 cattle per year, and for decades, the collected hides and skins have been processed into leather. However, there has been a decline in the price as well as in the demand for animal hides in the last few years, mainly due to increased customer interest in synthetic materials. This has significantly impacted small- and medium-scale abattoirs as they are left with no other option but to landfill these hides, which is not a sustainable approach. This review discusses the alternative approaches available for the management of animal hides, including those also suitable for tannery residues, which can economically and environmentally benefit society. These benefits include the production or generation of energy, compost, yarn, and medicinal goods, among other beneficial uses.
显示更多 [+] 显示较少 [-]Treatment of slaughterhouse wastewater by electrocoagulation and electroflotation as a combined process: process optimization through response surface methodology
2021
Akarsu, Ceyhun | Deveci, Ece Ümmü | Gönen, Çağdaş | Madenli, Özgecan
The contamination of water with organic compounds has become an increasing concern in today’s world. The cost-effective and sustainable treatment of industrial wastewaters is a major challenge. Advanced treatment techniques such as electrocoagulation–electroflotation offer economic and reliable solutions for the treatment of industrial wastewater. In this study, the electrocoagulation–electroflotation method was investigated for the simultaneous removal of chemical oxygen demand, total phosphorus, total Kjeldahl nitrogen, and color via response surface methodology. Factors such as electrode combination (Fe and Al), current density (10–20 mA/cm²), pH (3.0–9.0), and electrode distance (1–3 cm) were investigated in the treatment of wastewater to obtain maximum treatment efficiency. It was determined that chemical oxygen demand, total Kjeldahl nitrogen, total phosphorus, and color removal reached up to 94.0%, 77.5%, 97.0%, and 99.0%, respectively. Treatment costs were found as $0.71 with the Al-Fe electrode combination.
显示更多 [+] 显示较少 [-]Design and Performance Evaluation of a Fungi-Bacteria Consortium to Biodegrade Organic Matter at High Concentration on Synthetic Slaughterhouse Wastewater
2021
Robles-Morales, D. L. | Reyes Cervantes, A. | Díaz-Godínez, R. | Tovar-Jiménez, X. | Medina-Moreno, S. A. | Jiménez-González, A.
The present work evaluated the performance of a consortium designed and formed by five fungal species and four bacterial species isolated from the wastewater of a bovine cattle slaughterhouse to biodegrade organic matter in synthetic slaughterhouse wastewater (SSWW). Individual microorganism’s capability evaluation to remove COD and biodegrade SSWW substrates, together with bacteria-fungus confrontation assays, allowed the formation of nine defined consortia of fungi-bacteria according to a design of two factors with three levels (3²). Seven defined consortia exhibited a higher COD removal from SSWW (81.9 to 93.0%) than that achieved by the bacteria or fungi consortia alone (74.7 to 77.6%). Moreover, three defined consortia of fungi-bacteria achieved the highest substrate (protein, carbohydrate, and fat) biodegradation in SSWW. The microbial growth in the defined consortia was characterized by adjustment to the logistic model (0.041 < μ < 0.091 h⁻¹, 0.9006 < R² < 0.9454), whereas the COD removal efficiency was adjusted to a parabolic statistical model (R² = 0.6201), which showed that a bacterial inoculum between 7 to 20 times greater than the fungal one can lead to the highest consortium capacity to remove COD. This work provides elements that allow designing and forming defined consortia of fungi-bacteria to treat slaughterhouse wastewater with high organic matter levels.
显示更多 [+] 显示较少 [-]