细化搜索
结果 1-10 的 35
Bioburden in sleeping environments from Portuguese dwellings
2021
Viegas, Carla | Dias, Marta | Monteiro, Ana | Faria, Tiago | Lage, Joana | Carolino, Elisabete | Caetano, Liliana Aranha | Gomes, Anita Quintal | Almeida, Susana Marta | Verde, Sandra Cabo | Belo, Joana | Canha, Nuno
A wider characterization of indoor air quality during sleep is still lacking in the literature. This study intends to assess bioburden before and after sleeping periods in Portuguese dwellings through active methods (air sampling) coupled with passive methods, such as electrostatic dust cloths (EDC); and investigate associations between before and after sleeping and bioburden. In addition, and driven by the lack of information regarding fungi azole-resistance in Portuguese dwellings, a screening with supplemented media was also performed. The most prevalent genera of airborne bacteria identified in the indoor air of the bedrooms were Micrococcus (41%), Staphylococcus (15%) and Neisseria (9%). The major indoor bacterial species isolated in all ten studied bedrooms were Micrococcus luteus (30%), Staphylococcus aureus (13%) and Micrococcus varians (11%). Our results highlight that our bodies are the source of the majority of the bacteria found in the indoor air of our homes. Regarding air fungal contamination, Chrysosporium spp. presented the highest prevalence both in after the sleeping period (40.8%) and before the sleeping period (28.8%) followed by Penicillium spp. (23.47% morning; 23.6% night) and Chrysonilia spp. (12.4% morning; 20.3% night). Several Aspergillus sections were identified in air and EDC samples. However, none of the fungal species/strains (Aspergillus sections Fumigati, Flavi, Nidulantes and Circumdati) were amplified by qPCR in the analyzed EDC. The correlations observed suggest reduced susceptibility to antifungal drugs of some fungal species found in sleeping environments. Toxigenic fungal species and indicators of harmful fungal contamination were observed in sleeping environments.
显示更多 [+] 显示较少 [-]Assessment of kitchen emissions using a backpropagation neural network model based on urinary hydroxy polycyclic aromatic hydrocarbons
2020
Gan, Dong | Huang, Daizheng | Yang, Jie | Zhang, Li’e | Ou, Songfeng | Feng, Yumeng | Peng, Yang | Peng, Xiaowu | Zhang, Zhiyong | Zou, Yunfeng
Kitchen emissions are mixed indoor air pollutants with adverse health effects, but the large-scale assessment is limited by costly equipment and survey methods. This study aimed to discuss the application of backpropagation (BP) neural network models in the assessment of kitchen emissions based on the exposure marker. A total of 3686 participants were recruited for the kitchen survey, and their sleep quality was measured by the Pittsburgh sleep quality index (PSQI). After excluding the confounders, 365 participants were selected to assess their urinary hydroxy polycyclic aromatic hydrocarbons (OH-PAHs) concentrations by ultra-high-performance liquid chromatography/tandem mass spectrometry. Two BP neural network models were then set up using the survey and detection data from the 365 participants and used to predict the total urinary OH-PAHs concentrations of all participants. The total urinary OH-PAHs and 1-hydroxy-naphthalene (1-OHNap) concentrations were significantly higher among the 365 participants with poor sleep quality (global PSQI score > 5; P < 0.05). Results from internal and external validation showed that our model has high credibility (model 2). Further, the participants with higher predicted total urinary OH-PAHs concentrations were associated with the global PSQI score of >5 (odds ratio (OR) = 1.284, 95% confidence interval (CI) = 1.082–1.525 for participants with predicted total urinary OH-PAHs concentrations of over 1.897 μg/mmol creatinine in model 1, and OR = 1.467, 95% CI = 1.240–1.735 for participants with predicted total urinary OH-PAHs concentrations of over 2.253 μg/mmol creatinine in model 2) after adjusting for the confounders. Findings suggest that the BP neural network model is suitable for assessing kitchen emissions, and the urinary OH-PAHs concentrations can be taken as the model outlay.
显示更多 [+] 显示较少 [-]Effects of co-exposure to 900 MHz radiofrequency electromagnetic fields and high-level noise on sleep, weight, and food intake parameters in juvenile rats
2020
Bosquillon de Jenlis, Aymar | Del Vecchio, Flavia | Delanaud, Stéphane | Bach, Véronique | Pelletier, Amandine
Electrohypersensitive people attribute various symptoms to exposure of radiofrequency electromagnetic fields (RF-EMF); sleep disturbance is the most frequently cited. However, laboratory experiments have yielded conflicting results regarding sleep alterations. Our hypothesis was that exposure to RF-EMF alone would lead to slight or non-significant effects but that co-exposure to RF-EMFs and other environmental constraints (such as noise) would lead to significant effects.3-week-old male Wistar rats (4 groups, n = 12 per group) were exposed for 5 weeks to continuous RF-EMF (900 MHz, 1.8 V/m, SAR = 30 mW/kg) in the presence or absence of high-level noise (87.5 dB, 50–20000 Hz) during the rest period. After 5 weeks of exposure, sleep (24 h recording), food and water intakes, and body weight were recorded with or without RF-EMF and/or noise. At the end of this recording period, sleep was scored during the 1 h resttime in the absence of noise and of RF-EMF exposure.Exposure to RF-EMF and/or noise was associated with body weight gain, with hyperphagia in the noise-only and RF-EMF + noise groups and hypophagia in the RF-EMF-only group. Sleep parameters recording over 24 h highlighted a higher frequency of active wakefulness in the RF-EMF-only group and a lower non-rapid eye movement/rapid eye movement sleep ratio during the active period in the noise-only group. There were no differences in sleep duration in either group. During the 1-h, constraint-free sleep recording, sleep rebound was observed in the noise-only group but not in the RF-EMF-only and RF-EMF + noise groups.Our study showed effects of RF-EMF, regardless of whether or not the animals were also exposed to noise. However, the RF-EMF + noise group presented no exacerbation of those effects. Our results did not support the hypothesis whereby the effects of RF-EMF on physiological functions studied are only visible in animals exposed to both noise and RF-EMF.
显示更多 [+] 显示较少 [-]Compliance of indoor air quality during sleep with legislation and guidelines – A case study of Lisbon dwellings
2020
Canha, Nuno | Alves, Ana Carolina | Marta, Catarina Simão | Lage, Joana | Belo, Joana | Faria, Tiago | Cabo Verde, Sandra | Viegas, Carla | Alves, Célia | Almeida, Susana Marta
This study aimed to provide a comprehensive characterisation of the indoor air quality during the sleeping period of 10 couples at Lisbon dwellings, using a multi-pollutant approach, and to understand how the compliance with legislation and guidelines was to assure a good indoor air quality. The assessment of indoor air quality was conducted in the cold season using real time monitors during the sleeping period for comfort parameters (temperature and relative humidity) and air pollutants (carbon dioxide – CO₂, carbon monoxide – CO, formaldehyde – CH₂O, total volatile organic compounds – VOCs, and particulate matter – PM₂.₅ and PM₁₀), together with active sampling of bioaerosols (fungi and bacteria) before and after the sleeping period. Lower compliance (less than 50% of the cases) with the Portuguese legislation was found for temperature, CO₂ (3440 ± 1610 mg m⁻³), VOCs (1.79 ± 0.99 mg m⁻³) and both bioaerosol types. In 70% of the cases, PM₂.₅ (15.3 ± 9.1 μg m⁻³) exceeded the WHO guideline of 10 μg m⁻³. All bedrooms presented air change rates above the recommended minimum value of 0.7 h⁻¹, highlighting that a good indoor air quality during sleep is not guaranteed.
显示更多 [+] 显示较少 [-]Associations between residential traffic noise exposure and smoking habits and alcohol consumption–A population-based study
2018
Roswall, Nina | Christensen, Jeppe Schultz | Bidstrup, Pernille Envold | Raaschou-Nielsen, Ole | Jensen, Steen Solvang | Tjønneland, Anne | Sørensen, Mette
Traffic noise stresses and disturbs sleep. It has been associated with various diseases, and has recently also been associated with lifestyle. Hence, the association between traffic noise and disease could partly operate via a pathway of lifestyle habits, including smoking and alcohol intake.We investigated associations between modelled residential traffic noise and smoking habits and alcohol consumption.In a cohort of 57,053 participants, we performed cross-sectional analyses using data from a baseline questionnaire (1993-97), and longitudinal analyses of change between baseline and follow-up (2000-02). Smoking status (never, former, current) and intensity (tobacco, g/day) and alcohol consumption (g/day) was self-reported at baseline and follow-up. Address history from 1987-2002 for all participants were found in national registries, and road traffic and railway noise was modelled 1 and 5 years before enrolment, and from baseline to follow-up. Analyses were performed using logistic and linear regression, and adjusted for demographics, socioeconomic variables, leisure-time sports, and noise from the opposite source (road/railway).Road traffic noise exposure 5 years before baseline was positively associated with alcohol consumption (adjusted difference per 10 dB: 1.38 g/day, 95% confidence interval (CI): 1.10–1.65), smoking intensity (adjusted difference per 10 dB: 0.40 g/day, 95% CI: 0.19–0.61), and odds for being a current vs. never/former smoker at baseline (odds ratio (OR): 1.14; 95% CI: 1.10–1.17). In longitudinal analyses, we found no association between road traffic noise and change in smoking and alcohol habits. Railway noise was not associated with smoking habits and alcohol consumption, neither in cross-sectional nor in longitudinal analyses.The study suggests that long-term exposure to residential road traffic is associated with smoking habits and alcohol consumption, albeit only in cross-sectional, but not in longitudinal analyses.
显示更多 [+] 显示较少 [-]Personality and artificial light at night in a semi-urban songbird population: No evidence for personality-dependent sampling bias, avoidance or disruptive effects on sleep behaviour
2018
Raap, Thomas | Thys, Bert | Grunst, Andrea S. | Grunst, Melissa L. | Pinxten, Rianne | Eens, Marcel
Light pollution or artificial light at night (ALAN) is an increasing, worldwide challenge that affects many aspects of animal behaviour. Interestingly, the response to ALAN varies widely among individuals within a population and variation in personality (consistent individual differences in behaviour) may be an important factor explaining this variation. Consistent individual differences in exploration behaviour in particular may relate to the response to ALAN, as increasing evidence indicates its relation with how individuals respond to novelty and how they cope with anthropogenic modifications of the environment. Here, we assayed exploration behaviour in a novel environment as a proxy for personality variation in great tits (Parus major). We observed individual sleep behaviour over two consecutive nights, with birds sleeping under natural dark conditions the first night and confronted with ALAN inside the nest box on the second night, representing a modified and novel roosting environment. We examined whether roosting decisions when confronted with a camera (novel object), and subsequently with ALAN, were personality-dependent, as this could potentially create sampling bias. Finally, we assessed whether experimentally challenging individuals with ALAN induced personality-dependent changes in sleep behaviour.Slow and fast explorers were equally likely to roost in a nest box when confronted with either a camera or artificial light inside, indicating the absence of personality-dependent sampling bias or avoidance of exposure to ALAN. Moreover, slow and fast explorers were equally disrupted in their sleep behaviour when challenged with ALAN. Whether other behavioural and physiological effects of ALAN are personality-dependent remains to be determined. Moreover, the sensitivity to disturbance of different behavioural types might depend on the behavioural context and the specific type of challenge in question. In our increasingly urbanized world, determining whether the effects of anthropogenic stressors depend on personality type will be of paramount importance as it may affect population dynamics.
显示更多 [+] 显示较少 [-]Simulated mobile communication frequencies (3.5 GHz) emitted by a signal generator affects the sleep of Drosophila melanogaster
2021
Wang, Yahong | Zhang, Hongying | Zhang, Ziyan | Sun, Boqun | Tang, Chao | Zhang, Lu | Jiang, Zhihao | Ding, Bo | Liao, Yanyan | Cai, Peng
With the rapid development of science and technology, 5G technology will be widely used, and biosafety concerns about the effects of 5G radiofrequency radiation on health have been raised. Drosophila melanogaster was selected as the model organism for our study, in which a 3.5 GHz radiofrequency radiation (RF-EMR) environment was simulated at intensities of 0.1 W/m², 1 W/m², and 10 W/m². The activity of parent male and offspring (F1) male flies was measured using a Drosophila activity monitoring system under short-term and long-term 3.5 GHz RF-EMR exposure. Core genes associated with heat stress, the circadian clock and neurotransmitters were detected by QRT-PCR technology, and the contents of GABA and glutamate were detected by UPLC-MS. The results show that short-term RF-EMR exposure increased the activity level and reduced the sleep duration while long-term RF-EMR exposure reduced the activity level and increased the sleep duration of F1 male flies. Under long-term RF-EMR, the expression of heat stress response-related hsp22, hsp26 and hsp70 genes was increased, the expression of circadian clock-related per, cyc, clk, cry, and tim genes was altered, the content of GABA and glutamate was reduced, and the expression levels of synthesis, transport and receptor genes were altered. In conclusion, long-term RF-EMR exposure enhances the heat stress response of offspring flies and then affects the expression of circadian clock and neurotransmitter genes, which leads to decreased activity, prolonged sleep duration, and improved sleep quality.
显示更多 [+] 显示较少 [-]6-benzylaminopurine exposure induced development toxicity and behaviour alteration in zebrafish (Danio rerio)
2021
Yang, Mengying | Qiu, Jinyu | Zhao, Xin | Feng, XiZeng
6-benzylaminopurine (6-BA) is one of the first synthetic hormones and has been widely used in fruit cultivation, gardening and agriculture. However, excessive use of 6-BA will cause potential harm to the environment and humans. Therefore, our research focused on assessing the impact of 6-BA on the development and neurobehavior of zebrafish. The results showed that 6-BA had little effect on the embryos from 2 hpf to 10 hpf. However, delayed development, decreased survival and hatchability were observed under 30 and 40 mg/L 6-BA from 24 hpf. 6-BA also reduced surface tension of embryonic chorions at 24 hpf. In addition, 6-BA caused abnormal morphology and promoted the accumulation of oxidative stress. Transcription of genes in connection with development and oxidative stress was also strikingly altered. Results of movement assay showed that zebrafish were less active and their behavior was significantly inhibited under the 20 and 30 mg/L 6-BA treatments. Locomotion-related genes th and mao were down-regulated by gradient, while the transcription of dbh was upregulated at a low concentration (2 mg/L) but decreased as the concentration increased. Moreover, 6-BA exposure caused increased arousal and decreased sleep. Sleep/wake related genes hcrt and hcrtr2 were upregulated, but decreased at 30 mg/L, while the mRNA level of aanat2 was reduced in a concentration-dependent manner. To sum up, our results showed that 6-BA induced developmental toxicity, promoted the accumulation of oxidative stress, and damaged locomotion and sleep/wake behavior.
显示更多 [+] 显示较少 [-]Association of PM2.5 with sleep-disordered breathing from a population-based study in Northern Taiwan urban areas
2018
Shen, Yen-Ling | Liu, Wen-Te | Lee, Kang-Yun | Chuang, Hsiao-Chi | Chen, Hua-Wei | Chuang, Kai-Jen
Recent studies suggest that exposure to air pollution might be associated with severity of sleep-disordered breathing (SDB). However, the association between air pollution exposure, especially particulate matter with aerodynamic diameters <= 2.5 μm (PM₂.₅), and SDB is still unclear. We collected 4312 participants' data from the Taipei Medical University Hospital's Sleep Center and air pollution data from the Taiwan Environmental Protection Administration. Associations of particulate matter with aerodynamic diameters <=10 μm (PM₁₀), PM₂.₅, nitrogen dioxide (NO₂), ozone (O₃) and sulfur dioxide (SO₂) with apnea-hypopnea index (AHI) and oxygen desaturation index (ODI) were investigated by generalized additive models. We found that an interquartile range (IQR) increase in 1-year mean PM₂.₅ (3.4 μg/m³) and NO₂ (2.7 ppb) was associated with a 4.7% and 3.6% increase in AHI, respectively. We also observed the association of an IQR increase in 1-year mean PM₂.₅ with a 2.5% increase in ODI. The similar pattern was found in the association of daily mean PM₂.₅ exposure with increased AHI. Moreover, participants showed significant AHI and ODI responses to air pollution levels in spring and winter. We concluded that exposure to PM₂.₅ was associated with SDB. Effects of air pollution on AHI and ODI were significant in spring and winter.
显示更多 [+] 显示较少 [-]Artificial light at night affects sleep behaviour differently in two closely related songbird species
2017
Sun, Jiachen | Raap, Thomas | Pinxten, Rianne | Eens, Marcel
Artificial light at night (ALAN) or light pollution is an increasing and worldwide problem. There is growing concern that because of the disruption of natural light cycles, ALAN may pose serious risks for wildlife. While ALAN has been shown to affect many aspects of animal behaviour and physiology, few studies have experimentally studied whether individuals of different species in the wild respond differently to ALAN. Here, we investigated the effect of ALAN on sleep behaviour in two closely related songbird species inhabiting the same study area and roosting/breeding in similar nest boxes. We experimentally exposed free-living great tits (Parus major) and blue tits (Cyanistes caeruleus) to artificial light inside their nest boxes and observed changes in their sleep behaviour compared to the previous night when the nest boxes were dark.In line with previous studies, sleep behaviour of both species did not differ under dark conditions. ALAN disrupted sleep in both great and blue tits. However, compared to blue tits, great tits showed more pronounced effects and more aspects of sleep were affected. Light exposed great tits entered the nest boxes and fell asleep later, woke up and exited the nest boxes earlier, and the total sleep amount and sleep percentage were reduced. By contrast, these changes in sleep behaviour were not found in light exposed blue tits. Our field experiment, using exactly the same light manipulation in both species, provides direct evidence that two closely related species respond differently to ALAN, while their sleep behaviour under dark conditions was similar. Our research suggests that findings for one species cannot necessarily be generalised to other species, even closely-related species. Furthermore, species-specific effects could have implications for community dynamics.
显示更多 [+] 显示较少 [-]