细化搜索
结果 1-10 的 227
Extractive Treatment of Arsenic Contaminated Clay Soils (Vermiculite) 全文
2022
Abbaslou, Hanie | Ghofran Makshuf, Saeedeh | Bakhtiari, Somayeh | Ghanizadeh, Ali Reza | Shahrashoub, Meysam
In this research, the capability of vermiculite in arsenic extraction, associated with characterizing its main properties was evaluated. To address this purpose, vermiculite was artificially contaminated with arsenic at 7 and 28-day intervals. Then, arsenic was extracted from contaminated soils by different extractants. Various physical and mechanical tests were performed to investigate the effect of arsenic as an anionic contaminant on the properties of the vermiculite, as well as to evaluate how the properties of the contaminated soil were altered by the extraction process. The carbonate bonding phase was probably mainly responsible for the adsorption and fixation of arsenic with more than 50% portion among measured fractions at different curing times. Based on the vermiculite condition, hydrochloric acid was the best extractant for removing arsenic in all studied samples (around 3 -18 % more than other extractants). The clay soil demonstrated few changes due to arsenic contamination and modification. In general, the most promising characteristics of vermiculite as clay liner are its stability after contamination due to high CEC and SSA; however, its workability and strength (UCS between 110 to 220 kPa at different soil conditions) is a challenge and must be improved by adding coarser fractions like silt particles. In general, the results of this study regarding the effects of arsenic contamination and extraction onto vermiculite’s physical properties can provide appropriate information for researchers and geo-environmental engineers.
显示更多 [+] 显示较少 [-]Quantifying source and dynamics of acidic pollution in a coastal acid sulphate soil area 全文
2013
Phong, N.D. | To Phuc Tuong | Phu, N.D. | Nang, N.D. | Hoanh, Chu Thai
Quantifying source and dynamics of acidic pollution in a coastal acid sulphate soil area 全文
2013
Phong, N.D. | To Phuc Tuong | Phu, N.D. | Nang, N.D. | Hoanh, Chu Thai
The in-depth knowledge on management and reducing annual acidic pollution is important for improving the sustainable livelihood of people living in areas with acid sulphate soils (ASS). This study involved a long-term (2001-2006), large-scale canal water quality monitoring network (87 locations) and a field experiment at nine sites to quantify the dynamic variability of acidic pollution and its source in a coastal area with ASS in the Mekong River Delta of Vietnam. Widespread acidic pollution (pH <5) of surface water occurred at the beginning of the rainy season, while pH of the canal water remained high (7-8) at the end of the rainy season and during the dry season. The study identified canal embankment deposits, made of ASS spoils from canal dredging/excavation, as the main source of acidic pollution in the surrounding canal network. The findings suggested that there was a linkage between the amount of acidic loads into canal networks and the age of the embankment deposits. The most acute pollution (pH ~ 3) occurred in canals with sluggish tidal water flow, at 1-2 years after the deposition of excavated spoils onto the embankments in ASS. The amount of acidic loads transferred to the canal networks could be quantified from environmental parameters, including cumulative rainfall, soil type and age of embankment deposits. The study implied that dredging/excavation of canals in ASS areas must be carried out judiciously as these activities may increase the source of acidic pollution to the surrounding water bodies.
显示更多 [+] 显示较少 [-]Quantifying source and dynamics of acidic pollution in a coastal acid sulphate soil area 全文
2013
Phong, N. D. | Tuong, T. P. | Phu, N. D. | Nang, N. D. | Hoanh, Chu Thai
The in-depth knowledge on management and reducing annual acidic pollution is important for improving the sustainable livelihood of people living in areas with acid sulphate soils (ASS). This study involved a long-term (2001–2006), large-scale canal water quality monitoring network (87 locations) and a field experiment at nine sites to quantify the dynamic variability of acidic pollution and its source in a coastal area with ASS in the Mekong River Delta of Vietnam. Widespread acidic pollution (pH <5) of surface water occurred at the beginning of the rainy season, while pH of the canal water remained high (7–8) at the end of the rainy season and during the dry season. The study identified canal embankment deposits, made of ASS spoils from canal dredging/excavation, as the main source of acidic pollution in the surrounding canal network. The findings suggested that there was a linkage between the amount of acidic loads into canal networks and the age of the embankment deposits. The most acute pollution (pH ~ 3) occurred in canals with sluggish tidal water flow, at 1–2 years after the deposition of excavated spoils onto the embankments in ASS. The amount of acidic loads transferred to the canal networks could be quantified from environmental parameters, including cumulative rainfall, soil type and age of embankment deposits. The study implied that dredging/excavation of canals in ASS areas must be carried out judiciously as these activities may increase the source of acidic pollution to the surrounding water bodies.
显示更多 [+] 显示较少 [-]The spectral characteristics and cadmium complexation of soil dissolved organic matter in a wide range of forest lands 全文
2022
Zhang, Xiaoqing | Li, Ya | Ye, Jun | Chen, Zhihua | Ren, Dajun | Zhang, Shuqin
The quality and quantity of dissolved organic matter (DOM) greatly controls the fate of heavy metals. The characteristics of DOM and its interaction with metals are essential for the metal ecological risk assessment of soils. In this study, the DOM spectral characteristics of representative forest soils and the complex capacities between fluorescent DOM components and cadmium (Cd) were analyzed. Functional groups, such as carboxylic acids, alcohols and phenols, were determined by FT-IR analysis. Chromophoric DOM, fluorescent DOM and dissolved organic carbon (DOC) concentrations exhibited strong correlations with each other, indicating that variations of DOC could be well explained by Chromophoric DOM or fluorescent DOM due to high correlation coefficients. The spectral slope ratio was in the range of 0.85–5.90, implying an abundance of heavy macromolecular humic acids, peptides, and polycondensates. The absorbance spectral at 254 nm (SUVA₂₅₄) strongly correlated with SUVA₂₆₀ (r = 0.992, P < 0.01), indicating that hydrophobicity closely related with aromatic structure, and aromatic groups could be broadly hydrophobic. Fluorescence indices were from 1.62 to 2.21 and biological index values ranged from 0.54 to 1.14, where the DOM was mainly sourced from mixed terrestrial and autogenous inputs in most sites. Four universal fluorescence components were identified and characterized by fluorescence EEM-PARAFAC, including two humic-like (components 1 and 2), one tyrosine-like (components 3) and one fulvic-like (components 4) component. Both components 3 and 4 showed fluorescence quenching with increasing Cd concentrations, while components 1 and 2 had no evident change in fluorescence intensity. The logK₃ and logK₄ values ranged from 4.41 to 5.29 and 4.71 to 5.54, respectively, with most logK values of component 3 for Cd binding being smaller than that of component 4, thus, indicating that the fulvic acid substances exhibited stronger and more stable interactions with Cd than protein-like components.
显示更多 [+] 显示较少 [-]Urbanization significantly impacts the connectivity of soil microbes involved in nitrogen dynamics at a watershed scale 全文
2020
Zhang, Yan | Ji, Guodong | Wu, Tong | Qiu, Jiangxiao
As one of the most dominant ecosystems of urban green space, turfgrasses provide a wide range of ecosystem services. However, little is known about the interactions of microbial communities in turfgrass soils and how these interactions respond to expanding development of impervious surfaces during watershed urbanization. In this study, we analyzed bacterial communities and their co-occurrence patterns in turfgrass soils along an urbanization gradient as measured by the proportion of impervious surfaces in Jiulong River watershed in Fujian, China. Results show that the diversity and network size of bacterial communities negatively associated with impervious surfaces. The bacterial communities showed non-random co-occurrence patterns, with more intra-module connections observed for urbanized networks. The co-occurrence network with distinct modules of soil samples with contrasting land cover imperviousness suggested different functional organizations with altered microbial nitrogen processes. Structural equation modelling revealed that watershed impervious surfaces had indirect impacts on microbial connectivity by altering soil properties, including pH, temperature, moisture, C/N and nitrate (NO₃⁻). Moreover, impervious surfaces affected microbial connectivity far more than human population density. Our study highlights the significance of human disturbances in affecting microbial interactions and assemblies in turfgrass ecosystems through impervious surfaces and provides benefits for sustainable urban planning and management at a watershed scale.
显示更多 [+] 显示较少 [-]Understanding phosphate sorption characteristics of mineral amendments in relation to stabilising high legacy P calcareous soil 全文
2020
(Owen),
In China, excessive phosphorus (P) application in protected vegetable fields has led to high legacy P stores. Soil amendment with alum or dolomite is one of many best management practices (BMPs) used to reduce P losses in calcareous soils. However, both the kinetics and mechanisms of P sorption and soil available P in amended soils are understudied. Herein, both aspects were looked at under controlled conditions. Firstly, a sorption study which coupled P concentrations with poorly-crystalline Al hydroxides and dolomite was conducted. Results from this batch experiment showed that P sorption on poorly-crystalline Al hydroxides was homogenous and occurred mainly via displacement of inner-sphere hydroxyl (Al–OH) instead of the formation of AlPO₄. However, the amount of sorbed P reached maximum sorption of 73.1 mg g⁻¹ and did not change with further increase in P concentration. It was observed that P adsorbed onto the dolomite surface at low P concentrations, whereas hydroxyl replacement and uneven cluster precipitation of Ca₃(PO₄)₂ occurred at high P concentrations. A second 90 day incubation experiment investigated changes to soil available P and sorption-desorption across variable rates of amendments (0–50 g kg⁻¹). Results showed that alum amendment at a rate of 50 g kg⁻¹ decreased soil CaCl₂–P and Olsen-P concentrations by 91.9% and 57.8%, respectively. However, Olsen-P increased when the dolomite rates were <20 g kg⁻¹. Phosphorus sorption-desorption of the amended soil showed alum had higher P sorption efficiency than dolomite at low addition rates (<10 g kg⁻¹). However, soil amended with high dolomite rates (>10 g kg⁻¹) could sorb more P in comparison with alum when P concentrations were increased. The P status of the amended soil was closely connected to the P sorption mechanisms on mineral amendments, soil P concentrations and soil properties.
显示更多 [+] 显示较少 [-]Impacts of different sources of animal manures on dissemination of human pathogenic bacteria in agricultural soils 全文
2020
Li, Jinyang | Chen, Qinglin | Li, Helian | Li, Shiwei | Liu, Yinghao | Yang, Liyuan | Han, Xuemei
The human pathogenic bacteria (HPB) in animal feces may disseminate to agricultural soils with their land application as organic fertilizer. However, the knowledge about the impacts of different sources and rates of animal manures on the temporal changes of soil HPB remains limited, which hamper our ability to estimate the potential risks of their land application. Here, we constructed an HPB database including 565 bacterial strains. By blasting the 16 S rRNA gene sequences against the database we explored the occurrence and fate of HPB in soil microcosms treated with two rates of swine, poultry or cattle manures. A total of 30 HPB were detected in all of manure and soil samples. Poultry manure at the high level obviously improved the abundance of soil HPB. The application of swine manure could introduce concomitant HPB into the soils. Of which, Pseudomonas syringae pv. syringae B728a and Escherichia coli APEC O78 may deserve more attention because of their survival for a few days in manured soils and being possible hosts of diverse antibiotic resistance genes (ARGs) as revealed by co-occurrence pattern. Bayesian source tracking analysis showed that the HPB derived from swine manure had a higher contribution to soil pathogenic communities than those from poultry or cattle manures in early days of incubation. Mantel test together with variation partitioning analysis suggested that bacterial community and soil physicochemical properties were the dominant factors determining the profile of HPB and contributed 64.7% of the total variations. Overall, our results provided experimental evidence that application of animal manures could facilitate the potential dissemination of HPB in soil environment, which should arouse sufficient attention in agriculture practice and management to avoid the threat to human health.
显示更多 [+] 显示较少 [-]Examining CO2 and N2O pollution and reduction from forestry application of pure and mixture forest 全文
2020
Kong, Yuhua | Ma, Nyuk Ling | Yang, Xitian | Lai, Yong | Feng, Zhipei | Shao, Xinliang | Xu, Xingkai | Zhang, Dangquan
Greenhouse gases (GHGs) carbon dioxide (CO₂) and nitrous oxide (N₂O), contribute significantly to global warming, and they have increased substantially over the years. Reforestation is considered as an important forestry application for carbon sequestration and GHGs emission reduction, however, it remains unknown whether reforestation may instead produce too much CO₂ and N₂O contibuting to GHGs pollution. This study was performed to characterize and examine the CO₂ and N₂O emissions and their controlling factors in different species and types of pure and mixture forest used for reforestation. Five soil layers from pure forest Platycladus orientalis (PO), Robinia pseudoacacia (RP), and their mixed forest P-R in the Taihang mountains of central China were sampled and incubated aerobically for 11 days. The P-R soil showed lower CO₂ and N₂O production potentials than those of the PO soils (P < 0.01). The average reduction rate of cumulative CO₂ and N₂O was 31.63% and 14.07%, respectively. If the mixed planting pattern is implemented for reforestation, the annual CO₂ reduction amounts of China’s plantation can be achieved at 8.79 million tonnes. With the increase of soil depths, cumulative CO₂ production in PO and RP soils decreased, whereas CO₂ and N₂O production in P-R soil did not show similar pattern. Soil particle size fraction was the main factor influencing GHGs emissions, and the clay fraction showed negative correlation with cumulative CO₂ and N₂O production. In summary, compared with PO pure artificial forests, the mixture plantation mode can not only reduce GHGs pollution but also improve soil fertility, which is conducive to sustainable management of artificial forests.
显示更多 [+] 显示较少 [-]Zeolite-supported nanoscale zero-valent iron for immobilization of cadmium, lead, and arsenic in farmland soils: Encapsulation mechanisms and indigenous microbial responses 全文
2020
Li, Zhangtao | Wang, Lu | Wu, Jizi | Xu, Yan | Wang, Fan | Tang, Xianjin | Xu, Jianming | Ok, Yong Sik | Meng, Jun | Liu, Xingmei
Zeolite-supported nanoscale zero-valent iron (Z-NZVI) has great potential for metal(loid) removal, but its encapsulation mechanisms and ecological risks in real soil systems are not completely clear. We conducted long-term incubation experiments to gain new insights into the interactions between metal(loid)s (Cd, Pb, As) and Z-NZVI in naturally contaminated farmland soils, as well as the alteration of indigenous bacterial communities during soil remediation. With the pH-adjusting and adsorption capacities, 30 g kg⁻¹ Z-NZVI amendment significantly decreased the available metal(loid) concentrations by 10.2–96.8% and transformed them into strongly-bound fractions in acidic and alkaline soils after 180 d. An innovative magnetic separation of Z-NZVI from soils followed by XRD and XPS characterizations revealed that B-type ternary complexation, heterogeneous coprecipitation, and/or concurrent redox reactions of metal(loid)s, especially the formation of Cd₃(AsO₄)₂, PbFe₂(AsO₄)₂(OH)₂, and As⁰, occurred only under specific soil conditions. Sequencing of 16S rDNA using Illumina MiSeq platform indicated that temporary shifts in iron-resistant/sensitive, pH-sensitive, denitrifying, and metal-resistant bacteria after Z-NZVI addition were ultimately eliminated because soil characteristics drove the re-establishment of indigenous bacterial community. Meanwhile, Z-NZVI recovered the basic activities of bacterial DNA replication and denitrification functions in soils. These results confirm that Z-NZVI is promising for the long-term remediation of metal(loid)s contaminated farmland soil without significant ecotoxicity.
显示更多 [+] 显示较少 [-]Sorption behaviour of per- and polyfluoroalkyl substances (PFASs) in tropical soils 全文
2020
Oliver, Danielle P. | Li, Yasong | Orr, Ryan | Nelson, Paul | Barnes, Mary | McLaughlin, Michael (Michael J.) | Kookana, Rai S.
The sorption behaviour of three perfluoroalkyl substances (PFASs), namely perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA) and perfluorohexane sulfonic acid (PFHxS), was determined on 28 tropical soils. Tropical soils are often highly weathered, richer in sesquioxides than temperate soils and may contain variable charge minerals. There are little data on sorption of PFASs in tropical soils. The highest Kd values were found for PFOS with mean values ranging from 0 to 31.6 L/kg. The Kd values for PFOA and PFHxS ranged from 0 to 4.9 L/kg and from 0 to 5.6 L/kg, respectively. While these values are in the range of literature sorption data, the average Kd values for PFOS and PFOA from the literature were 3.7 times and 3.6 times higher, respectively, than those measured in this study. Stepwise regression analysis did explain some of the variance, but with different explanatory variables for the different PFASs. The main soil properties explaining sorption for PFOS and PFOA were oxalate-extractable Al and pH, and for PFHxS was pH.
显示更多 [+] 显示较少 [-]Comparison of greenhouse and open field cultivations across China: Soil characteristics, contamination and microbial diversity 全文
2018
Sun, Jianteng | Pan, Lili | Li, Zhiheng | Zeng, Qingtao | Wang, Lingwen | Zhu, Lizhong
A national scale survey was conducted to determine an array of inorganic and organic contaminants in agricultural soils from two cultivation modes (greenhouse vs. open field) in 20 provinces across China. The investigated contaminants include organochlorine pesticides (OCPs), phthalate esters (PAEs), polycyclic aromatic hydrocarbons (PAHs), lead (Pb), zinc (Zn), copper (Cu) and cadmium (Cd). The large amounts of agrochemicals used and special cultivation mode in greenhouse caused substantial soil pollution and deterioration of soil quality. Mean concentrations of both OCPs and PAEs in greenhouse soil were approximately 100% higher than those in open field. The pH values were 6.85 ± 1.04 and 7.34 ± 0.84 for greenhouse and open field, respectively (p > 0.05). The soil microbial community was predicted to be affected by pollution in greenhouse through the PICRUSt analysis of 16s rRNA sequences. The 12 variables including various chemicals and soil properties together explained 15% of the observed variation in the community composition. In the studied variables, PAEs and lead were the primary factors affecting microbial diversity in greenhouse soils, while pH had the greatest impact on the microbial community in open field soils. These findings enhanced our understanding of the environmental impact and contamination management of greenhouses worldwide.
显示更多 [+] 显示较少 [-]