细化搜索
结果 1-10 的 106
Pluies acides, production de nitrate dans les sols forestiers et annees de secheresse estivale: cofacteurs de risque de deperissement des forets. Reflexions sur la synergie.
1989
Bardy J.A.
Fate of spilled xylene as influenced by soil moisture content.
1987
Aurelius M.W. | Brown K.W.
Earthworm cast production as a new behavioural biomarker for toxicity testing.
2010
Capowiez , Yvan (INRA , Avignon (France). UR 1115 Unité de recherche Plantes et Systèmes de Culture Horticoles) | Dittbrenner , Nils (INRA , Avignon (France). UR 1115 Unité de recherche Plantes et Systèmes de Culture Horticoles) | Rault-Léonardon , Magali (INRA , Avignon (France). UMR 0406 Abeilles et Environnement) | Triebskorn , Rita (Eberhard Karls University of Tübingen(Allemagne).) | Hedde , Mickaël (INRA , Versailles (France). UR 0251 Physico-chimie et Ecotoxicologie des Sols d'agrosystèmes contaminés) | Mazzia , Christophe (INRA , Avignon (France). UMR 0406 Abeilles et Environnement)
There is currently a lack of ecotoxicity tests adapted to earthworm species of higher ecological relevance and whose endpoints could be directly related to their ecological role in the soil. We propose a new and relatively simple ecotoxicity test based on the estimation of cast production (CP) by Lumbricus terrestris under laboratory conditions. CP was found to be linearly correlated to earthworm biomass and to be greatly influenced by soil water content. Azinphos-methyl had no effect on CP at all the concentrations tested. Significant decreases were observed at the normal application rate for other pesticides with (imidacloprid, carbaryl, methomyl) or without (ethyl-parathion and chlorpyrifos-ethyl) a clear concentration–effect response. For the highest concentration tested, reduction in CP varied between 35 and 67%. CP is straightforward and rapidly measured and ecologically meaningful. We thus believe it to be of great use as an endpoint in ecotoxicity testing.
显示更多 [+] 显示较少 [-]Effect of topography on nitrous oxide emissions from winter wheat fields in Central France
2011
Gu, Jiangxin, J. | Nicoullaud, Bernard, B. | Rochette, Philippe, P. | Pennock, Daniel J., D. J. | Hénault, Catherine | Cellier, Pierre, P. | Richard, Guy | Unité de recherche Science du Sol (USS) ; Institut National de la Recherche Agronomique (INRA) | Department of Soil Science ; University of Saskatchewan [Saskatoon] (U of S) | Environnement et Grandes Cultures (EGC) ; Institut National de la Recherche Agronomique (INRA)-AgroParisTech
no sp Assessment of Nitrogen Fluxes to Air and Water from Site Scale to Continental Scale | We assessed nitrous oxide (N2O) emissions at shoulder and foot-slope positions along three sloping sites (1.6-2.1%) to identify the factors controlling the spatial variations in emissions. The three sites received same amounts of total nitrogen (N) input at 170 kg N ha−1. Results showed that landscape positions had a significant, but not consistent effect on N2O fluxes with larger emission in the foot-slope at only one of the three sites. The effect of soil inorganic N (NH4+ + NO3−) contents on N2O fluxes (r2 = 0.55, p < 0.001) was influenced by water-filled pore space (WFPS). Soil N2O fluxes were related to inorganic N at WFPS > 60% (r2 = 0.81, p < 0.001), and NH4+ contents at WFPS < 60% (r2 = 0.40, p < 0.01), respectively. Differences in WFPS between shoulder and foot-slope correlated linearly with differences in N2O fluxes (r2 = 0.45, p < 0.001). We conclude that spatial variations in N2O emission were regulated by the influence of hydrological processes on soil aeration intensity.
显示更多 [+] 显示较少 [-]Long-term immobilization of cadmium and lead with biochar in frozen-thawed soils of farmland in China
2022
Liu, Mingxuan | Hou, Renjie | Fu, Qiang | Li, Tianxiao | Zhang, Shoujie | Su, Anshuang
The problem of potentially toxic elements (PTEs) in farmland is a key issue in global pollution prevention and control and has an important impact on environmental safety, human health, and sustainable agricultural development. Based on the climate background of high–latitude cold regions, this study simulated freeze–thaw cycles through indoor tests. Different initial conditions, such as biochar application rates (0%, 1%, 2%) and different initial soil moisture contents (15%, 20%, 25%), were set to explore the morphological changes in cadmium (Cd) and lead (Pb) in soil and the response relationship to the changes in soil physicochemical properties. The results indicate that soil pH decreases during freeze–thaw cycles, and soil alkalinity increases with increasing biochar content. Freeze–thaw cycles caused the total amount of PTEs to have a U–shaped distribution, and the amount of PTEs in the soluble (SOL) and reducible (RED) fraction increased by 0.28–56.19%. Biochar reduced the amount of Cd and Pb migration in the soil, and an increase in soil moisture content reduced the availability of Cd and Pb in the soil. Freezing and thawing damaged the soil structure, and biochar reduced the fractionation of small particle aggregates by enhancing the stability of soil aggregates, thereby reducing the soil's ability to adsorb Cd and Pb. In summary, for farmland soil remediation and pollution control, the application of biochar has a certain ability to optimize soil properties. Considering the distribution of PTEs in the soil and the physicochemical properties of the soil, the application of 1% biochar to soil with a 20% moisture content is optimal for regulating seasonally frozen soil remediation.
显示更多 [+] 显示较少 [-]Characteristics of annual N2O and NO fluxes from Chinese urban turfgrasses
2021
Zhan, Yang | Xie, Junfei | Yao, Zhisheng | Wang, Rui | He, Xingjia | Wang, Yan | Zheng, Xunhua
Urban turfgrass ecosystems are expected to increase at unprecedented rates in upcoming decades, due to the increasing population density and urban sprawl worldwide. However, so far urban turfgrasses are among the least understood of all terrestrial ecosystems concerning their impact on biogeochemical N cycling and associated nitrous oxide (N₂O) and nitric oxide (NO) fluxes. In this study, we aimed to characterize and quantify annual N₂O and NO fluxes from urban turfgrasses dominated by either C4, warm-season species or C3, cool-season and shade-enduring species, based on year-round field measurements in Beijing, China. Our results showed that soil N₂O and NO fluxes varied substantially within the studied year, characterizing by higher emissions during the growing season and lower fluxes during the non-growing season. The regression model fitted by soil temperature and soil water content explained approximately 50%–70% and 31%–38% of the variance in N₂O and NO fluxes, respectively. Annual cumulative emissions for all urban turfgrasses ranged from 0.75 to 1.27 kg N ha⁻¹ yr⁻¹ for N₂O and from 0.30 to 0.46 kg N ha⁻¹ yr⁻¹ for NO, both are generally higher than those of Chinese natural grasslands. Non-growing season fluxes contributed 17%–37% and 23%–30% to the annual budgets of N₂O and NO, respectively. Our results also showed that compared to the cool-season turfgrass, annual N₂O and NO emissions were greatly reduced by the warm-season turfgrass, with the high root system limiting the availability of inorganic N substrates to soil microbial processes of nitrification and denitrification. This study indicates the importance of enhanced N retention of urban turfgrasses through the management of effective species for alleviating the potential environmental impacts of these rapidly expanding ecosystems.
显示更多 [+] 显示较少 [-]Hazardous indoor CO2 concentrations in volcanic environments
2016
Viveiros, Fátima | Gaspar, J. L. (João L.) | Ferreira, Teresa | Silva, Catarina
Carbon dioxide is one of the main soil gases released silently and permanently in diffuse degassing areas, both in volcanic and non-volcanic zones. In the volcanic islands of the Azores (Portugal) several villages are located over diffuse degassing areas. Lethal indoor CO2 concentrations (higher than 10 vol %) were measured in a shelter located at Furnas village, inside the caldera of the quiescent Furnas Volcano (S. Miguel Island). Hazardous CO2 concentrations were detected not only underground, but also at the ground floor level. Multivariate regression analysis was applied to the CO2 and environmental time series recorded between April 2008 and March 2010 at Furnas village. The results show that about 30% of the indoor CO2 variation is explained by environmental variables, namely barometric pressure, soil water content and wind speed. The highest indoor CO2 concentrations were recorded during bad weather conditions, characterized by low barometric pressure together with rainfall periods and high wind speed. In addition to the spike-like changes observed on the CO2 time series, long-term oscillations were also identified and appeared to represent seasonal variations. In fact, indoor CO2 concentrations were higher during winter period when compared to the dry summer months. Considering the permanent emission of CO2 in various volcanic regions of the world, CO2 hazard maps are crucial and need to be accounted by the land-use planners and authorities.
显示更多 [+] 显示较少 [-]Belowground effects of enhanced tropospheric ozone and drought in a beech/spruce forest (Fagus sylvatica L./Picea abies [L.] Karst)
2010
Nikolova, Petia S. | Andersen, Christian P. | Blaschke, Helmut | Matyssek, Rainer | Häberle, Karl-Heinz
The effects of experimentally elevated O3 on soil respiration rates, standing fine-root biomass, fine-root production and δ13C signature of newly produced fine roots were investigated in an adult European beech/Norway spruce forest in Germany during two subsequent years with contrasting rainfall patterns. During humid 2002, soil respiration rate was enhanced under elevated O3 under beech and spruce, and was related to O3-stimulated fine-root production only in beech. During dry 2003, the stimulating effect of O3 on soil respiration rate vanished under spruce, which was correlated with decreased fine-root production in spruce under drought, irrespective of the O3 regime. δ13C signature of newly formed fine-roots was consistent with the differing gs of beech and spruce, and indicated stomatal limitation by O3 in beech and by drought in spruce. Our study showed that drought can override the stimulating O3 effects on fine-root dynamics and soil respiration in mature beech and spruce forests. Drought has the capacity to override the stimulating ozone effect on soil respiration in adult European beech/Norway spruce forest.
显示更多 [+] 显示较少 [-]Earthworm cast production as a new behavioural biomarker for toxicity testing
2010
Capowiez, Yvan | Dittbrenner, Nils | Rault, Magali | Triebskorn, Rita | Hedde, Mickaël | Mazzia, Christophe
There is currently a lack of ecotoxicity tests adapted to earthworm species of higher ecological relevance and whose endpoints could be directly related to their ecological role in the soil. We propose a new and relatively simple ecotoxicity test based on the estimation of cast production (CP) by Lumbricus terrestris under laboratory conditions. CP was found to be linearly correlated to earthworm biomass and to be greatly influenced by soil water content. Azinphos-methyl had no effect on CP at all the concentrations tested. Significant decreases were observed at the normal application rate for other pesticides with (imidacloprid, carbaryl, methomyl) or without (ethyl-parathion and chlorpyrifos-ethyl) a clear concentration–effect response. For the highest concentration tested, reduction in CP varied between 35 and 67%. CP is straightforward and rapidly measured and ecologically meaningful. We thus believe it to be of great use as an endpoint in ecotoxicity testing. Cast production of Lumbricus terrestris is affected by pesticides under laboratory conditions.
显示更多 [+] 显示较少 [-]Validation of the stomatal flux approach for the assessment of ozone visible injury in young forest trees. Results from the TOP (transboundary ozone pollution) experiment at Curno, Italy
2009
Gerosa, G. | Marzuoli, R. | Desotgiu, R. | Bussotti, F. | Ballarin-Denti, A.
This paper summarises some of the main results of a two-year experiment carried out in an Open-Top Chambers facility in Northern Italy. Seedlings of Populus nigra, Fagus sylvatica, Quercus robur and Fraxinus excelsior have been subjected to different ozone treatments (charcoal-filtered and non-filtered air) and soil moisture regimes (irrigated and non-irrigated plots). Stomatal conductance models were applied and parameterised under South Alpine environmental conditions and stomatal ozone fluxes have been calculated. The flux-based approach provided a better performance than AOT40 in predicting the onset of foliar visible injuries. Critical flux levels, related to visible leaf injury, are proposed for P. nigra and F. sylvatica (ranging between 30 and 33 mmol O3 m-²). Soil water stress delayed visible injury appearance and development by limiting ozone uptake. Data from charcoal-filtered treatments suggest the existence of an hourly flux threshold, below which may occur a complete ozone detoxification. The stomatal uptake of ozone is an important factor to evaluate visible injury appearance and evolution in plants.
显示更多 [+] 显示较少 [-]