细化搜索
结果 1-10 的 141
The adsorption mechanisms of oriental plane tree biochar toward bisphenol S: A combined thermodynamic evidence, spectroscopic analysis and theoretical calculations
2022
Fang, Zheng | Gao, Yurong | Zhang, Fangbin | Zhu, Kaipeng | Shen, Zihan | Liang, Haixia | Xie, Yue | Yu, Chenglong | Bao, Yanping | Feng, Bo | Bolan, Nanthi | Wang, Hailong
Garden pruning waste is becoming a problem that intensifies the garbage siege. It is of great significance to purify polluted water using biochar prepared from garden pruning waste. Herein, the interaction mechanism between BPS and oriental plane tree biochar (TBC) with different surface functional groups was investigated by adsorption experiments, spectroscopic analysis and theoretical calculations. Adsorption kinetics and isotherm of BPS on TBC can be satisfactorily fitted into pseudo-second-order kinetic and Langmuir models, respectively. A rapid adsorption kinetic toward BPS was achieved by TBC in 15 min. As compared with TBC prepared at low temperature (300 °C) (LTBC), the maximum adsorption capacity of TBC prepared at high temperature (600 °C) (HTBC) can be significantly improved from 46.7 mg g⁻¹ to 72.9 mg g⁻¹. Besides, the microstructure and surface functional groups of HTBC were characterized using SEM, BET-N₂, and XPS analysis. According to density functional theory (DFT) theoretical calculations, the higher adsorption energy of HTBC for BPS was mainly attributed to π-π interaction rather than hydrogen bonding, which was further supported by the analysis of FTIR and Raman spectra as well as the adsorption thermodynamic parameters. These findings suggested that by improving π-π interaction through high pyrolysis temperature, BPS could be removed and adsorbed by biochar with high efficacy, cost-efficiency, easy availability, and carbon-negative in nature, contributing to global carbon neutrality.
显示更多 [+] 显示较少 [-]Multifractal features of activity concentration and stochastic risk assessment of naturally occurring and technogenic radionuclides in the soil of Yerevan, Armenia
2022
Aruta, Antonio | Sahakyan, Lilitʻ | Tepanosyan, Gevorg | Movsisyan, Nona | Belyaeva, Olga | Albanese, Stefano
Spatial patterns and background ranges of naturally occurring radionuclides (NORs) (i.e. U-238, Th-232, K-40) and Cs-137 were studied in the urban soils of Yerevan, the capital city of Armenia. Multifractal Inverse Distance Weighting (MIDW) was used to generate and analyze distribution patterns of radionuclide activities. Based on Fourier transformation of radioactivity data, a spectral analysis was also applied to separate, where possible, background/baseline patterns from local anomalies: two ranges of background values were found to characterise the Yerevan territory. Specifically, in the south and south-east of Yerevan, the lower background ranges of U-238, Th-232 and K-40 comprised in the intervals 2.60–36.42 Bq/kg, 4.04–30.63 Bq/kg and 147.7–396.7 Bq/kg, respectively, were observed in association with the presence of sedimentary formations. In contrast, the higher ones were found, instead, in the central and northern parts of the city where andesite-basalt lavas and ignimbrite tuffs occur. Here, the background values rise to 142.4 Bq/kg, 138.76 Bq/kg and 1502 Bq/kg, respectively. As for the distribution of artificial Cs-137, its baseline levels in Yerevan seem to depend mostly on the global radioactive fallout and some local technogenic sources. Its distribution patterns partially differ from those of NORs. In the framework of this paper, Radium equivalent activity (RaEq), outdoor absorbed dose rate in air (ODRA) and annual effective dose equivalent (AEDEs) were also determined and mapped. They show a good coincidence of their spatial variations with those of NORs. The Monte Carlo simulation was used to assess excess lifetime cancer risk from a stochastic perspective. The related sensitivity analysis revealed that, among NORs, U-238 and Th-232 give the greatest contribution to the total variance (45.7% 42.8%, respectively). In comparison, K-40 has the lowest share (11.3%). Regarding Cs-137, a highly negligible contribution to the onset of health risks (accounting for 0.02%) was observed.
显示更多 [+] 显示较少 [-]Elucidating the structural variation of membrane concentrated landfill leachate during Fenton oxidation process using spectroscopic analyses
2020
Teng, Chunying | Zhou, Kanggen | Zhang, Zhang | Peng, Changhong | Chen, Wei
Membrane concentrated landfill leachate (MCLL) contains large amounts of recalcitrant organic matter that cause potential hazards to the environment. Knowledge on the compositional variation of MCLL during treatment is important for a better understanding on the degradation pathway of organic pollutants. In this work, the structural change of MCLL during Fenton oxidation process was examined using spectroscopic techniques. The removal rates of COD, TOC and UV254 reached 78.9 ± 1.3%, 70.2 ± 1.4% and 90.64 ± 1.6%, respectively, under the optimal condition (i.e., dosage of H2O2 = 9.0 mL/200 mL, H2O2/Fe(II) molar ratio = 3.0, pH = 3.0, time = 40 min). Spectral analyses suggested that aromatic/CC structure and CO bonds in MCLL can be successfully destroyed by Fenton oxidation, resulting in a decrease in molecular weight. One fulvic-like and one humic-like components were identified in MCLL, both of which can be removed by Fenton treatment. In addition, two-dimensional correlation spectroscopic analyses suggested the oxidative changes of MCLL structure in the order of fulvic-like component/unsaturated conjugated bond > aromatic structure > humic-like component. The results may provide a new insight to the understanding on the structure variation of MCLL during treatment, which is beneficial for the design of cost-effective treatment strategies.
显示更多 [+] 显示较少 [-]Spectroscopic investigation of Cu2+, Pb2+ and Cd2+ adsorption behaviors by chitosan-coated argillaceous limestone: Competition and mechanisms
2019
Zhang, Zhen | He, Shuran | Zhang, Yulong | Zhang, Kun | Wang, Jinjin | Jing, Ran | Yang, Xingjian | Hu, Zheng | Lin, Xiaojing | Li, Yongtao
In the present study, the competitive adsorption of Cu²⁺, Pb²⁺, and Cd²⁺ by a novel natural adsorbent (i.e., argillaceous limestone) modified with chitosan (C-AL) was investigated. The results demonstrated that both intraparticle diffusion and chemisorption marked significant contributions to the Cu²⁺ adsorption process by both raw argillaceous limestone (R-AL) and C-AL in mono-metal adsorption systems. Antagonism was found to be the predominant competitive effect for Cu²⁺, Pb²⁺ and Cd²⁺ adsorptions by C-AL in the multi-metal adsorption system. The three-dimensional simulation and FTIR analysis revealed that the presence of Cu²⁺ suppressed Pb²⁺ and Cd²⁺ adsorptions, while the effect of Cd²⁺ on Cu²⁺ and Pb²⁺ adsorptions was insignificant. The spectroscopic analyses evidenced that amide groups in C-AL played a crucial role in metal adsorption. The preferential adsorptions of Pb²⁺ > Cu²⁺ > Cd²⁺ were likely due to the different affinities of the metals to the lone pair of electrons on the N atom from the amide groups and/or the O atoms from the –OH and -COO⁻ groups on C-AL. The interactions between C-AL and metal ions and between various metal species influenced their competitive adsorption behaviors. C-AL exhibited a superior metal adsorption capacity in comparison with that the capacities of other natural adsorbents reported during the last decade, suggesting its potential practical applications.
显示更多 [+] 显示较少 [-]Adsorption of Eu(III) and Th(IV) on three-dimensional graphene-based macrostructure studied by spectroscopic investigation
2019
Huang, Zhi-Wei | Li, Zi-Jie | Zheng, Li-Rong | Wu, Wang-Suo | Chai, Zhi-Fang | Shi, Wei-Qun
One of the most important reasons for the controversy over the development of nuclear energy is the proper disposal of spent fuel. Separation of actinide and lanthanide ions is an important part of safe long-term storage of radioactive waste. Herein, a three-dimensional (3D) graphene-based macrostructure (GOCS) was utilized to remove actinide thorium and lanthanide europium ions from aqueous solutions. The adsorption of Eu(III) and Th(IV) on the GOCS was evaluated as a function of adsorption time, solution pH, initial ion concentrations, and ionic strength. The experimentally determined maximum adsorption capacities of this GOCS for Eu(III) (pH 6.0) and Th(IV) (pH 3.0) are as high as 150 and 220 mg/g, respectively. By using Fourier transformation infrared (FT-IR), X-ray photoelectron (XPS), and extended X-ray absorption fine structure (EXAFS) spectroscopy, we concluded that the Eu(III) and Th(IV) adsorption was predominantly attributed to the inner-sphere coordination with various oxygen- and nitrogen-containing functional groups on GOCS surfaces. Our selective adsorption results demonstrate that the actinide and lanthanide ions can be effectively separated from transition metal ions. This study provides new clues to the overall recycling of actinide and lanthanide ions in radioactive environmental pollution treatments.
显示更多 [+] 显示较少 [-]Systematic studies on the binding of metal ions in aggregates of humic acid: Aggregation kinetics, spectroscopic analyses and MD simulations
2019
Tan, Liqiang | Yu, Zhiwu | Tan, Xiaoli | Fang, Ming | Wang, Xiangxue | Wang, Junfeng | Xing, Jinlu | Ai, Yuejie | Wang, Xiangke
The binding of metal ions with humic acid (HA) plays an important role in the aggregation of HA and the migration of metal ions in the environments. The effects of common cations (Na⁺, Mg²⁺, Ca²⁺ and Al³⁺) and heavy metal ions (Ag⁺, Cd²⁺, Cu²⁺, Cr³⁺ and Eu³⁺) on the aggregation of HA were investigated systematically by aggregation kinetics, spectroscopic techniques and molecular dynamic (MD) simulations. The critical coagulation concentration (CCC) of mono-, di- and trivalent cations could be predicted by the Schulze-Hardy rule. The aggregation of HA in the presence of Na⁺ and Ag⁺ was mainly due to the reduction of repulsive force and the hydrogen bonds between HA molecules. While the complexation of di- and trivalent cations with carboxylic/phenolic groups, or the cation-π interactions enhanced the intra- or inter-molecular bridges in HA and then contributed greatly to the aggregation of HA. Heavy metal ions could easily pass through the electric double-layer of HA compared with common cations. MD simulations further signified the strong aggregation ability of HA molecules in solutions containing high valence metal ions. These findings are important for understanding not only how the influence of metal ions on the aggregation of HA, but also the conditions which ions more efficient for aggregation.
显示更多 [+] 显示较少 [-]Underwater noise level predictions of ammunition explosions in the shallow area of Lithuanian Baltic Sea
2019
Bagočius, Donatas | Narščius, Aleksas
Among the noisiest man-made activities in the seas, emitting very high acoustic energy are the underwater explosions of various objects and ship shock trials. Sound energy emitted by high explosives can be predicted or measured at sea. Sometimes, it can be convenient to apply empirical formulas and scaling laws to approximate the energy of underwater explosions. In addition, at some instances the determination of the spectral properties of the explosions is useful, i.e. when possible animal exposure to impulsive noise has to be evaluated. This paper presents an example of an application of freely available scaling laws and equations for prediction of noise levels of underwater explosions of historical ordnance in the shallow sea environments.Main findings of the study: An available scaling laws applied to model underwater explosion properties; spatial extent of explosion mapped; arising issues of modelling of underwater explosions in the shallow marine areas discussed.
显示更多 [+] 显示较少 [-]Competitive binding of Cd, Ni and Cu on goethite organo–mineral composites made with soil bacteria
2018
Du, Huihui | Huang, Qiaoyun | Peacock, Caroline L. | Tie, Boqing | Lei, Ming | Liu, Xiaoli | Wei, Xiangdong
Soil is a heterogeneous porous media that is comprised of a variety of organo-mineral aggregates. Sorption of heavy metals onto these composite solids is a key process that controls heavy metal mobility and fate in the natural environment. Pollution from a combination of heavy metals is common in soil, therefore, understanding the competitive binding behavior of metal ions to organo-mineral composites is important in order to predict metal mobility and fate. In this study, batch experiments were paired with spectroscopic studies to probe the sorption characteristics of ternary CdNiCu sorbates to a binary organo-goethite composite made with Bacillus cereus cells. Scanning electron microscopy shows that goethite nano-sized crystals are closely associated with the bacterial surfaces. Sorption experiments show a larger adsorptivity and affinity for Cu than Cd/Ni on goethite and B. cereus, and the goethite–B. cereus composite. X-ray photoelectron spectroscopy reveals that carboxylate and phosphate functional moieties present on the bacterial cell walls are primarily responsible for metal sorption to the goethite–B. cereus composite. Synchrotron-based X-ray fluorescence shows that Cu and Ni are predominately associated with the bacterial fraction of the goethite–B. cereus composite, whereas Cd is mainly associated with the goethite fraction. The findings of this research have important implications for predicting the mobility and fate of heavy metals in soil multi-component systems.
显示更多 [+] 显示较少 [-]Mechanism study of humic acid functional groups for Cr(VI) retention: Two-dimensional FTIR and 13C CP/MAS NMR correlation spectroscopic analysis
2017
Zhang, Jia | Chen, Linpeng | Yin, Huilin | Jin, Song | Liu, Fei | Chen, Honghan
Undissolved humic acid (HA) is known to substantially effect the migration and transformation of hexavalent chromium [Cr(VI)] in soils. The mechanisms of Cr(VI) retention in soils by undissolved HA have been reported; however, past studies are inconclusive about the types of HA functional groups that are involved in Cr(VI) retention and the retention mechanisms. Utilizing a two-dimensional correlation spectroscopy (2DCOS) analysis for FTIR and 13C CP/MAS NMR, this study investigated the variations of HA function groups and molecular structures after reactions with aqueous Cr(VI) under different pH conditions. Based on the changing sequence of functional groups interpreted from the 2DCOS results, a four-step mechanism for Cr(VI) retention was determined as follows: (1) electrostatic adsorption of Cr(VI) to HA surface, (2) complexation of adsorbed Cr(VI) by carboxyl and ester, (3) reduction of complexed Cr(VI) to Cr(III) by phenol and polysaccharide, and (4) complexation of reduced Cr(III) by carboxylic groups. These functional groups that are involved in Cr(VI) retention were determined to occur in aromatic domains.
显示更多 [+] 显示较少 [-]Use of sunlight to degrade oxytetracycline in marine aquaculture's waters
2016
Leal, J.F. | Esteves, V.I. | Santos, E.B.H.
Oxytracycline (OTC) is a broad spectrum antibiotic authorized for use in European aquaculture. Its photo-degradation has been widely studied in synthetic aqueous solutions, sometimes resorting to expensive methods and without proven effectiveness in natural waters. Thus, this work studied the possibility to apply the solar photo-degradation for removal of OTC from marine aquaculture's waters. For that, water samples were collected at different locals of the water treatment circuit, from two different aquaculture companies. Water samples were firstly characterized regarding to pH, salinity, total suspended solids (TSS), organic carbon and UV–Vis spectroscopic characteristics. Then, the samples were spiked with OTC and irradiated using simulated sunlight in order to evaluate the matrix effects on OTC photo-degradation. From kinetic results, the apparent quantum yields and the outdoor half-life times, at 40°N for midsummer and midwinter days were estimated by the first time for these conditions. For a midsummer day, at sea level, the outdoor half-life time predicted for OTC in these aquaculture's waters ranged between 21 and 25 min. Additionally, the pH and salinity effects on the OTC photo-degradation were evaluated and it has been shown that high pH values and the presence of sea salt increase the OTC photo-degradation rate in aquaculture's waters, compared to results in deionised water. The results are very promising to apply this low-cost methodology using the natural sunlight in aquaculture's waters to remove OTC.
显示更多 [+] 显示较少 [-]