细化搜索
结果 1-10 的 141
The distribution and retained amount of benzo[a]pyrene at the micro-zones of mangrove leaf cuticles: Results from a novel analytical method 全文
2021
Guo, Shuai | Wei, Chaoxian | Zhu, Yaxian | Zhang, Yong
Plant leaf cuticles play a critical role in the accumulation and transport of atmospheric polycyclic aromatic hydrocarbons (PAHs). The relationship between the distribution and retained amount of PAHs on the leaf cuticles and the leaves micro-zone structures is still unclear. In this study, a confocal microscopic fluorescence spectral analysis (CMFSA) system with a spatial resolution of 200 nm was established as a direct and noninvasive means to determine the microscopic distribution and quantify the retained amount of benzo[a]pyrene (B[a]P) at Aegiceras corniculatum (Ac), Kandelia obovata (Ko) and Avicennia marina (Am) leaf cuticle micro-zones (0.096 mm²). The linear ranges for the established method were 10–1900 ng spot⁻¹ for Ac, 15–1700 ng spot⁻¹ for Ko and 30–1800 ng spot⁻¹ for Am, and the detection limits were 0.06 ng spot⁻¹ for Ac, 0.06 ng spot⁻¹ for Ko and 0.07 ng spot⁻¹ for Am. Notably, B[a]P formed clusters and unevenly distributed at the leaf cuticles. On the adaxial cuticles, B[a]P was mainly accumulated unevenly along the epidermis cell wall, and it was also distinctively distributed in the secretory cells around salt glands for Ac and Am. On the abaxial leaf cuticles, B[a]P was concentrated in the salt glands and stomata apart from being unevenly distributed in the epidermis cell wall. Moreover, the amount of B[a]P retained presented a negative correlation with the polarity of leaf cuticles, which resulted in the amount of B[a]P retained on the adaxial leaf cuticles being significantly higher than that on abaxial leaf cuticles. Our results provide a potential in situ method for investigating the distribution and retained amount of PAHs at plant leaf surface micro-zones, which would contribute to further studying and understanding the mechanism of migration and transformation of PAHs by plant leaves from a microscopic perspective.
显示更多 [+] 显示较少 [-]Adsorption of Eu(III) and Th(IV) on three-dimensional graphene-based macrostructure studied by spectroscopic investigation 全文
2019
Huang, Zhi-Wei | Li, Zi-Jie | Zheng, Li-Rong | Wu, Wang-Suo | Chai, Zhi-Fang | Shi, Wei-Qun
One of the most important reasons for the controversy over the development of nuclear energy is the proper disposal of spent fuel. Separation of actinide and lanthanide ions is an important part of safe long-term storage of radioactive waste. Herein, a three-dimensional (3D) graphene-based macrostructure (GOCS) was utilized to remove actinide thorium and lanthanide europium ions from aqueous solutions. The adsorption of Eu(III) and Th(IV) on the GOCS was evaluated as a function of adsorption time, solution pH, initial ion concentrations, and ionic strength. The experimentally determined maximum adsorption capacities of this GOCS for Eu(III) (pH 6.0) and Th(IV) (pH 3.0) are as high as 150 and 220 mg/g, respectively. By using Fourier transformation infrared (FT-IR), X-ray photoelectron (XPS), and extended X-ray absorption fine structure (EXAFS) spectroscopy, we concluded that the Eu(III) and Th(IV) adsorption was predominantly attributed to the inner-sphere coordination with various oxygen- and nitrogen-containing functional groups on GOCS surfaces. Our selective adsorption results demonstrate that the actinide and lanthanide ions can be effectively separated from transition metal ions. This study provides new clues to the overall recycling of actinide and lanthanide ions in radioactive environmental pollution treatments.
显示更多 [+] 显示较少 [-]Adsorption mechanisms of chromate and phosphate on hydrotalcite: A combination of macroscopic and spectroscopic studies 全文
2019
Hsu, Liang-Ching | Tzou, Yu-Min | Chiang, Po-Neng | Fu, Wei-Min | Wang, Ming-Kuang | Teah, Heng Yi | Liu, Yu-Ting
Hydrotalcite (HT) is a layered double hydroxide (LDH), which is considered as a potential adsorbent to remove anion contaminants. In this study, adsorption of chromate (CrO₄) and phosphate (PO₄) on HT was conducted at various pH and temperatures. Related adsorption mechanisms were determined via the isotherm, kinetic, and competitive adsorption studies as well as the Cr K-edge X-ray absorption fine-structure (XAFS) spectroscopy. The maximum adsorption capacities for CrO₄ and PO₄ on HT were 0.16 and 0.23 mmol g⁻¹. Regarding adsorption kinetics, CrO₄ and PO₄ adsorption on HT could be well described by the second order model, and the rate coefficient of CrO₄ and PO₄ on HT decreased significantly with the increasing pH from 5 to 9. The adsorption kinetics for CrO₄ and PO₄ were divided into fast and slow stages with the boundary at 15 min. This biphasic adsorption behavior might be partially attributed to multiple reactive pathways including anion exchange and surface complexation. Fitting results of Cr K-edge EXAFS analysis showed a direct bonding between CrO₄ and Al on HT surfaces. Such a surface complexation appeared to be the rate-limiting step for CrO₄ adsorption on HT. By contrast, the diffusion through the hydrated interlayer space of HT was the major rate-limiting step for PO₄. This study determined the adsorption behaviors of CrO₄ and PO₄ on HT, including the initial transfer process and the subsequent adsorption mechanisms. Such information could improve the strategy to use HT as the potential adsorbent for the remediation of anionic pollutants.
显示更多 [+] 显示较少 [-]Spectroscopic investigation of Cu2+, Pb2+ and Cd2+ adsorption behaviors by chitosan-coated argillaceous limestone: Competition and mechanisms 全文
2019
Zhang, Zhen | He, Shuran | Zhang, Yulong | Zhang, Kun | Wang, Jinjin | Jing, Ran | Yang, Xingjian | Hu, Zheng | Lin, Xiaojing | Li, Yongtao
In the present study, the competitive adsorption of Cu²⁺, Pb²⁺, and Cd²⁺ by a novel natural adsorbent (i.e., argillaceous limestone) modified with chitosan (C-AL) was investigated. The results demonstrated that both intraparticle diffusion and chemisorption marked significant contributions to the Cu²⁺ adsorption process by both raw argillaceous limestone (R-AL) and C-AL in mono-metal adsorption systems. Antagonism was found to be the predominant competitive effect for Cu²⁺, Pb²⁺ and Cd²⁺ adsorptions by C-AL in the multi-metal adsorption system. The three-dimensional simulation and FTIR analysis revealed that the presence of Cu²⁺ suppressed Pb²⁺ and Cd²⁺ adsorptions, while the effect of Cd²⁺ on Cu²⁺ and Pb²⁺ adsorptions was insignificant. The spectroscopic analyses evidenced that amide groups in C-AL played a crucial role in metal adsorption. The preferential adsorptions of Pb²⁺ > Cu²⁺ > Cd²⁺ were likely due to the different affinities of the metals to the lone pair of electrons on the N atom from the amide groups and/or the O atoms from the –OH and -COO⁻ groups on C-AL. The interactions between C-AL and metal ions and between various metal species influenced their competitive adsorption behaviors. C-AL exhibited a superior metal adsorption capacity in comparison with that the capacities of other natural adsorbents reported during the last decade, suggesting its potential practical applications.
显示更多 [+] 显示较少 [-]Coagulation behavior of humic acid in aqueous solutions containing Cs+, Sr2+ and Eu3+: DLS, EEM and MD simulations 全文
2018
Tan, Liqiang | Tan, Xiaoli | Mei, Huiyang | Ai, Yuejie | Sun, Lu | Zhao, Guixia | Hayat, Tasawar | Alsaedi, Ahmed | Chen, Changlun | Wang, Xiangke
The coagulation behaviors of humic acid (HA) with Cs+ (10–500 mM), Sr2+ (0.8–10.0 mM) and Eu3+ (0.01–1.0 mM) at different pH values (2.8, 7.1 and 10.0) were acquired through a dynamic light scattering (DLS) technique combined with spectroscopic analysis and molecular dynamic (MD) simulations. The coagulation rate and the average hydrodynamic diameter (<Dh>) increased significantly as the concentration of nuclides increased. <Dh> could be scaled to time t as <Dh>∝ ta at higher Sr2+ concentrations, which shows that HA coagulation is consistent with the diffusion-limited colloid aggregation (DLCA) model. Trivalent Eu3+ induced HA coagulation at a much lower concentration than bivalent Sr2+ and monovalent Cs+. The coagulation value ratio of Sr2+ and Eu3+ to Cs+ is almost proportional to Z−6, indicating that the HA coagulation process is generally consistent with the Schulze-Hardy rule. Spectroscopic analysis indicated that the complexation between nuclides and carboxylic/phenolic groups of HA molecules played important roles in the coagulation of HA. MD modelling suggested that Sr2+ and Eu3+ ions increased the coagulation process through the formation of intra- or inter-molecular bridges between negatively charged HA molecules, whereas for Cs+, no inter-molecular bridges were formed. This work offers new insight into the interactions between HA and radionuclides and provides a prediction for the roles of HA in the transportation and elimination of radionuclides in severely polluted environments.
显示更多 [+] 显示较少 [-]Dynamic variations in dissolved organic matter and the precursors of disinfection by-products leached from biochars: Leaching experiments simulating intermittent rain events 全文
2018
Lee, Mi-Hee | Ok, Yong Sik | Hur, Jin
Biochar-leached dissolved organic matter may have a substantial impact on the water quality of receiving water surrounded by biochar-amended fields. In this study, we tracked variations in the spectroscopic characteristics and the disinfection by-products formation potentials of dissolved organic matter (DOM) leached during sequential extraction for three different biochars (BCs), which simulates DOM from BC-amended fields during intermittent rain events. The optical properties of DOM were more dependent on the BC types with different origins (sludge, corn, and rice) rather than on the extraction time. A large amount of DOM was released during the initial period of the extraction (1 day), which was equivalent to 52–60% of the total cumulative organic carbon during 17 days of extraction. The relative contribution of the initial extraction to the total cumulative amounts was greater for the formation potential of trihalomethanes (THMs) per BC (71–82%) compared to those of haloacetic acids (HAAs) or dissolved organic carbon (DOC), suggesting that the leaching behaviors of disinfection byproducts (DBP) precursors from BCs may be different from those of DOC (i.e., bulk DOM). Among the three BCs, corn BC-derived DOM exhibited the highest formation potentials of THMs and HAAs per BC for both the initial and the total cumulative extraction. The specific (or DOC-normalized) THMs formation potential was positively correlated with the ratios of terrestrial humic-like to fulvic-like components, implying condensed aromatic structures could operate as a surrogate for THMs formation of BC-derived DOM. This study provided insight into dynamic leaching behaviors of DOM from BCs and the formation potentials for THMs and HAAs in BC-amended fields under intermittent rainfall.
显示更多 [+] 显示较少 [-]Use of sunlight to degrade oxytetracycline in marine aquaculture's waters 全文
2016
Leal, J.F. | Esteves, V.I. | Santos, E.B.H.
Oxytracycline (OTC) is a broad spectrum antibiotic authorized for use in European aquaculture. Its photo-degradation has been widely studied in synthetic aqueous solutions, sometimes resorting to expensive methods and without proven effectiveness in natural waters. Thus, this work studied the possibility to apply the solar photo-degradation for removal of OTC from marine aquaculture's waters. For that, water samples were collected at different locals of the water treatment circuit, from two different aquaculture companies. Water samples were firstly characterized regarding to pH, salinity, total suspended solids (TSS), organic carbon and UV–Vis spectroscopic characteristics. Then, the samples were spiked with OTC and irradiated using simulated sunlight in order to evaluate the matrix effects on OTC photo-degradation. From kinetic results, the apparent quantum yields and the outdoor half-life times, at 40°N for midsummer and midwinter days were estimated by the first time for these conditions. For a midsummer day, at sea level, the outdoor half-life time predicted for OTC in these aquaculture's waters ranged between 21 and 25 min. Additionally, the pH and salinity effects on the OTC photo-degradation were evaluated and it has been shown that high pH values and the presence of sea salt increase the OTC photo-degradation rate in aquaculture's waters, compared to results in deionised water. The results are very promising to apply this low-cost methodology using the natural sunlight in aquaculture's waters to remove OTC.
显示更多 [+] 显示较少 [-]In situ visualization and quantitative investigation of the distribution of polycyclic aromatic hydrocarbons in the micro-zones of mangrove sediment 全文
2016
Li, Ruilong | Zhu, Yaxian | Zhang, Yong
The distribution of polycyclic aromatic hydrocarbons (PAHs) in the micro-zones of mangrove sediment is a predominant factors determining PAH bioavailability. In this study, a novel method for the in situ visualization (via microscope) and quantitative investigation of the PAH distribution in the micro-zones of mangrove sediment was established using microscopic fluorescence spectral analysis combined with derivative synchronous fluorescence spectroscopy (MFSA-DSFS). The MFSA-DSFS method significantly suppressed the background fluorescence signal of the sediment (the S/N values increased by over two orders of magnitude). The proportion of the nonpolar organic carbon content in the particulate organic matter (POM) rather than its content in the total organic matter (TOM) showed a significantly positive correlation with the uneven PAH distribution (Relative DC-M values) evaluated using the established method (p < 0.05). The extent of the uneven PAH distribution in the micro-zones of aged sediment was higher than that in the spiked sediment. Moreover, the distribution pattern of the PAHs within the mangrove sediment changed to become more homogeneous in the presence of low-molecular-weight organic acids (LMWOAs), which primarily contribute to increasing the POM content.
显示更多 [+] 显示较少 [-]Variation in indoor levels of polycyclic aromatic hydrocarbons from burning various biomass types in the traditional grass-roofed households in Western Kenya 全文
2011
Lisouza, Fred Ayodi | Owuor, Okinda P. | Lalah, Joseph O.
Biomass burning as fuel in the traditional grass-roofed rural households of Western Province of Kenya in open fire places, in poorly ventilated conditions, lead to accumulation of soot under the roofs. This study characterized and quantified the polycyclic aromatic hydrocarbons (PAHs) in accumulated soot in these households and determined the variation in PAHs concentrations with fuel biomass type. Soot samples collected from the households were extracted, cleaned and analysed by gas chromatography. The PAHs were identified using retention times, verified by gas chromatographic mass spectral analysis and quantified from peak area responses using the internal standard method. The PAHs levels significantly varied (P≤0.05) with biomass type in the order: dung≥indigenous trees≥exotic trees≥shrubs and crop residues. Use of dung and wood from indigenous trees as fuel should be discouraged since they are higher emitters (P≤0.05) of carcinogenic PAHs.
显示更多 [+] 显示较少 [-]Influence of the nature of soil organic matter on the sorption behaviour of pentadecane as determined by PLS analysis of mid-infrared DRIFT and solid-state 13C NMR spectra 全文
2010
Ehlers, G.A Clark | Forrester, Sean T. | Scherr, Kerstin E. | Loibner, Andreas P. | Janik, L. J. (Les J)
The nature of soil organic matter (SOM) functional groups associated with sorption processes was determined by correlating partitioning coefficients with solid-state 13C nuclear magnetic resonance (NMR) and diffuse reflectance mid-infrared (DRIFT) spectral features using partial least squares (PLS) regression analysis. Partitioning sorption coefficients for n-pentadecane (n-C15) were determined for three alternative models: the Langmuir model, the dual distributed reactive domain model (DRDM) and the Freundlich model, where the latter was found to be the most appropriate. NMR-derived constitutional descriptors did not correlate with Freundlich model parameters. By contrast, PLS analysis revealed the most likely nature of the functional groups in SOM associated with n-C15 sorption coefficients (KF) to be aromatic, possibly porous soil char, rather than aliphatic organic components for the presently investigated soils. High PLS cross-validation correlation suggested that the model was robust for the purpose of characterising the functional group chemistry important for n-C15 sorption. NMR/IR spectroscopy and chemometrics reveal the aromatic fraction of soil organic matter being responsible for alkane sorption.
显示更多 [+] 显示较少 [-]