细化搜索
结果 1-10 的 453
Source analysis of the tropospheric NO2 based on MAX-DOAS measurements in northeastern China
2022
Liu, Feng | Xing, Chengzhi | Su, Pinjie | Luo, Yifu | Zhao, Ting | Xue, Jiexiao | Zhang, Guohui | Qin, Sida | Song, Youtao | Bu, Naishun
Ground-based Multi-Axis Differential Optical Absorption Spectroscopy (Max-DOAS) measurements of nitrogen dioxide (NO₂) were continuously obtained from January to November 2019 in northeastern China (NEC). Seasonal variations in the mean NO₂ vertical column densities (VCDs) were apparent, with a maximum of 2.9 × 10¹⁶ molecules cm⁻² in the winter due to enhanced NO₂ emissions from coal-fired winter heating, a longer photochemical lifetime and atmospheric transport. Daily maximum and minimum NO₂ VCDs were observed, independent of the season, at around 11:00 and 13:00 local time, respectively, and the most obvious increases and decreases occurred in the winter and autumn, respectively. The mean diurnal NO₂ VCDs at 11:00 increased to at 08:00 by 1.6, 5.8, and 6.7 × 10¹⁵ molecules cm⁻² in the summer, autumn and winter, respectively, due to increased NO₂ emissions, and then decreased by 2.8, 4.2, and 5.1 × 10¹⁵ molecules cm⁻² at 13:00 in the spring, summer, and autumn, respectively. This was due to strong solar radiation and increased planetary boundary layer height. There was no obvious weekend effect, and the NO₂ VCDs only decreased by about 10% on the weekends. We evaluated the contributions of emissions and transport in the different seasons to the NO₂ VCDs using a generalized additive model, where the contributions of local emissions to the total in the spring, summer, autumn, and winter were 89 ± 12%, 92 ± 11%, 86 ± 12%, and 72 ± 16%, respectively. The contribution of regional transport reached 26% in the winter, and this high contribution value was mainly correlated with the northeast wind, which was due to the transport channel of air pollutants along the Changbai Mountains in NEC. The NO₂/SO₂ ratio was used to identify NO₂ from industrial sources and vehicle exhaust. The contribution of industrial NO₂ VCD sources was >66.3 ± 16% in Shenyang due to the large amount of coal combustion from heavy industrial activity, which emitted large amounts of NO₂. Our results suggest that air quality management in Shenyang should consider reductions in local NO₂ emissions from industrial sources along with regional cooperative control.
显示更多 [+] 显示较少 [-]Effects of long-term perfluorooctane sulfonate (PFOS) exposure on activated sludge performance, composition, and its microbial community
2022
Lu, Bianhe | Qian, Jin | He, Fei | Wang, Peifang | He, Yuxuan | Tang, Sijing | Tian, Xin
The widespread presence and persistence of perfluorooctane sulfonate (PFOS) in wastewater treatment plants, as well as its toxicity and bioaccumulation potential, necessitates the investigation on their impact on bioreactor performance. A 48-day exposure test was adopted to study the effects of low (10 μg L-1) and high (1000 μg L-1) PFOS concentrations in a sequencing batch reactor on the performance, composition, and microbial community of activated sludge. The results suggested that adding PFOS at low and high concentrations lowered the removal efficiency of total nitrogen by 22.48% (p < 0.01) and 16.30% (p < 0.01) respectively, while enhanced that of total phosphorus by 1.87% (p > 0.05) and 7.07% (p < 0.05) respectively, compared with the control group. The addition of PFOS also led to the deterioration of activated sludge dewatering performance. Composition and spectroscopic measurements revealed that the PFOS dosage changed the composition of the activated sludge. Furthermore, the PFOS altered the structure and function of the activated sludge microbial community as well as key enzyme activities.
显示更多 [+] 显示较少 [-]Interplay between arsenic and selenium biomineralization in Shewanella sp. O23S
2022
Staicu, Lucian C. | Wójtowicz, Paulina J. | Molnár, Zsombor | Ruiz-Agudo, Encarnación | Gallego, José Luis R. | Baragaño, Diego | Pósfai, Mihály
Bacteria play crucial roles in the biogeochemical cycle of arsenic (As) and selenium (Se) as these elements are metabolized via detoxification, energy generation (anaerobic respiration) and biosynthesis (e.g. selenocysteine) strategies. To date, arsenic and selenium biomineralization in bacteria were studied separately. In this study, the anaerobic metabolism of As and Se in Shewanella sp. O23S was investigated separately and mixed, with an emphasis put on the biomineralization products of this process. Multiple analytical techniques including ICP-MS, TEM-EDS, XRD, Micro-Raman, spectrophotometry and surface charge (zeta potential) were employed. Shewanella sp. O23S is capable of reducing selenate (SeO₄²⁻) and selenite (SeO₃²⁻) to red Se(-S)⁰, and arsenate (AsO₄³⁻) to arsenite (AsO₃³⁻). The release of H₂S from cysteine led to the precipitation of AsS minerals: nanorod AsS and granular As₂S₃. When As and Se oxyanions were mixed, both As–S and Se(-S)⁰ biominerals were synthesized. All biominerals were extracellular, amorphous and presented a negative surface charge (−24 to −38 mV). Kinetic analysis indicated the following reduction yields: SeO₃²⁻ (90%), AsO₄³⁻ (60%), and SeO₄²⁻ (<10%). The mix of SeO₃²⁻ with AsO₄³⁻ led to a decrease in As removal to 30%, while Se reduction yield was unaffected (88%). Interestingly, SeO₄²⁻ incubated with AsO₄³⁻ boosted the Se removal (71%). The exclusive extracellular formation of As and Se biominerals might indicate an extracellular respiratory process characteristic of various Shewanella species and strains. This is the first study documenting a complex interplay between As and Se oxyanions: selenite decreased arsenate reduction, whereas arsenate stimulated selenate reduction. Further investigation needs to clarify whether Shewanella sp. O23S employs multi-substrate respiratory enzymes or separate, high affinity enzymes for As and Se oxyanion respiration.
显示更多 [+] 显示较少 [-]Wild fish and seafood species in the western Mediterranean Sea with low safe mercury concentrations
2022
Capodiferro, Marco | Marco, Esther | Grimalt, Joan O.
A total of 1345 specimens belonging to 58 different species of wild fish and seafood from the western Mediterranean Sea were analyzed to assess total mercury levels and to estimate which species meet the EU recommendations for human consumption (0.5 μg g⁻¹ ww) in all cases. All fish species were caught off the Mediterranean coasts and intended for human consumption. All specimens were collected from local markets located in Spain, Italy and France that sell fish caught by local fishermen (Eivissa, Menorca, Mallorca, Alacant, L'Ampolla, Ametlla de Mar, Marseille, Genoa, Civitavecchia, Alghero) at different time periods. Mercury concentrations were measured by thermal decomposition-gold amalgamator-atomic absorption spectrometry. Only thirteen species were found that did not exceed 0.5 μg g⁻¹ ww in any specimen analyzed. These safe species were sardines (Sardina pilchardus), anchovies (Engraulis encrasicolus), blue whiting (Micromesistius poutassou), picarel (Spicara smaris), blackspot seabream (Pagellus bogaraveo), gilthead seabream (Sparus aurata), pearly razorfish (Xyrichtys novacula), surmullet (Mullus surmuletus), painted comber (Serranus scriba), brown meagre (Sciaena umbra), salema (Sarpa salpa), common dolphinfish (Coryphaena hippurus) and squid (Loligo vulgaris). These species occupy different trophic levels, have different lengths and average weights, but show a low mercury concentration than others living in the same environments. Potential human consumption of these species as sole source of fish would imply estimated weekly intakes representing between 49% and 70% of the recommended provisional tolerable weekly intake of methylmercury in the worst case. Health authorities should pay specific attention to species that do not meet EU thresholds and make appropriate precautionary health recommendations, especially for pregnant women and children.
显示更多 [+] 显示较少 [-]Systematic development of extraction methods for quantitative microplastics analysis in soils using metal-doped plastics
2022
Tophinke, Alissa H. | Joshi, Akshay | Baier, Urs | Hufenus, Rudolf | Mitrano, Denise M.
The inconsistency of available methods and the lack of harmonization in current microplastics (MPs) analysis in soils demand approaches for extraction and quantification which can be utilized across a wide variety of soil types. To enable robust and accurate assessment of extraction workflows, PET MPs with an inorganic tracer (Indium, 0.2% wt) were spiked into individual soil subgroups and standard soils with varying compositions. Due to the selectivity of the metal tracer, MPs recovery rates could be quickly and quantitatively assessed using ICP-MS. The evaluation of different methods specifically adapted to the soil properties were assessed by isolating MPs from complex soil matrices by systematically investigating specific subgroups (sand, silt, clay, non-lignified and lignified organic matter) before applying the workflow to standard soils. Removal of recalcitrant organic matter is one of the major hurdles in isolating MPs for further size and chemical characterization, requiring novel approaches to remove lignocellulosic structures. Therefore, a new biotechnological method (3-F-Ultra) was developed which mimics natural degradation processes occurring in aerobic (Fenton) and anaerobic fungi (CAZymes). Finally, a Nile Red staining protocol was developed to evaluate the suitability of the workflow for non-metal-doped MPs, which requires a filter with minimal background residues for further chemical identification, e.g. by μFTIR spectroscopy. Image analysis was performed using a Deep Learning tool, allowing for discrimination between the number of residues in bright-field and MPs counted in fluorescence mode to calculate a Filter Clearness Index (FCI). To validate the workflow, three well-characterized standard soils were analyzed applying the final method, with recoveries of 88% for MPs fragments and 74% for MPs fibers with an average FCI of 0.75. Collectively, this workflow improves our current understanding of how to adapt extraction protocols according to the target soil composition, allowing for improved MPs analysis in environmental sampling campaigns.
显示更多 [+] 显示较少 [-]Microplastic distribution and composition on two Galápagos island beaches, Ecuador: Verifying the use of citizen science derived data in long-term monitoring
2022
Jones, Jen S. | Guézou, Anne | Medor, Sara | Nickson, Caitlin | Savage, Georgie | Alarcón-Ruales, Daniela | Galloway, Tamara S. | Muñoz-Pérez, Juan Pablo | Nelms, Sarah E. | Porter, Adam | Thiel, Martin | Lewis, Ceri
Monitoring beach plastic contamination across space and time is necessary for understanding its sources and ecological effects, and for guiding mitigation. This is logistically and financially challenging, especially for microplastics. Citizen science represents an option for sampling accessible sites to support long term monitoring, but challenges persist around data validation. Here we test a simple citizen science methodology to monitor visible microplastic contamination on sandy beaches using a standard quadrat unit (50 cm × 50 cm x 5 cm depth) sieved to 1 mm, to support the analysis of microplastic on two islands within the marine protected area of the Galápagos Archipelago, Ecuador (San Cristóbal and Santa Cruz islands). High school and university students undertook supervised sampling of two beaches in 2019–2020 collecting over 7000 particles. A sub-sample of the suspected microplastics collected (n = 2,213, ∼30% total) were analysed using FTIR spectrometry, confirming 93% of particles >1 mm visually identified by students were microplastics or rubber, validating this method as a crowd-sourced indicator for microplastic contamination. These data provide important insights into the plastic contamination of Galápagos, revealing plastic abundances of 0–2524 particles m⁻² over the two beaches (the highest reported in Galápagos). Strong accumulation gradients were measured parallel to the waterline at Punta Pitt (San Cristobal island) and perpendicular to the waterline at Tortuga Bay (Santa Cruz island), where four-fold higher concentrations were recorded at the sea turtle nesting habitat on the back-beach dune. No significant seasonal trends were measured during one year. These results demonstrate the value of citizen science in filling spatiotemporal knowledge gaps of beach contamination to support intervention design and conservation.
显示更多 [+] 显示较少 [-]Insights into variations on dissolved organic matter of bauxite residue during soil-formation processes following 2-year column simulation
2022
Xue, Shengguo | Liu, Zheng | Fan, Jiarong | Xue, Rui | Guo, Ying | Chen, Wei | Hartley, William | Zhu, Feng
Bauxite residue, an industrial alkaline solid waste, has a low organic carbon content which hinders plant growth. Dissolved organic matter (DOM) drives many biogeochemical processes including carbon storage and soil formation in soils. Input of exogenous organic materials may provide organic carbon and accelerate soil formation processes in bauxite residue. However, the potential effects of ameliorants on the quantity and quality of DOM in bauxite residue are still poorly understood. Here, the integration of ultraviolet–visible (UV–Vis) spectra, fluorescence spectra, and parallel factor (PARAFAC) analysis were used to investigate the vertical characteristics of DOM in bauxite residue treated by PV (the combined addition of 2% phosphogypsum and 4% vermicompost, w/w) and BS (6% w/w including 4% bagasse and 2% bran) with 2-year column experiments. The content of DOM in untreated residues ranged from 0.064 to 0.096 g/kg, whilst higher contents of DOM were observed in PV (0.13 g/kg) and BS (0.26 g/kg) treatment. Meanwhile, with the increase of residue depth, the aromaticity and hydrophobic components of DOM in residue decreased, which indicated that the degree of humification of the treated residues in the upper layer was higher than that in the lower layer. Compared with BR, BS and PV treatment accumulated the related content of fulvic acid-like substance from 36.14% to 71.33% and 74.86%, respectively. The incorporation of vermicompost and biosolids increased the content of humic-like substances, whilst decreasing the content of protein-like substances in the surface layer, which may be due to the enrichment of the microbial community. During soil formation processes, the application of organic amendments reduced both salinity and alkalinity, enhanced microbial community diversity, and changed the quantity and quality of DOM in bauxite residue. These findings improve our understanding of the dynamics of DOM and response of DOM to soil formation processes in bauxite residue.
显示更多 [+] 显示较少 [-]Microplastic concentrations in cultured oysters in two seasons from two bays of Baja California, Mexico
2021
Lozano-Hernández, Eduardo Antonio | Ramírez-Álvarez, Nancy | Rios Mendoza, Lorena Margarita | Macías-Zamora, José Vinicio | Sánchez-Osorio, José Luis | Hernández-Guzmán, Félix Augusto
As filter feeders, bivalve mollusks have a high potential risk of contamination by microplastics (MPs), which can be considered a transfer vector for humans through their consumption. Spatial-temporal differences in the MP concentration were evaluated in the cultured oyster Magallana gigas in Todos Santos Bay (TSB) and San Quintin Bay (SQB) during winter and summer (2019). MPs were found in all samples in both seasons, where microfibers were the most abundant particles observed. Only in winter, statistically significant differences were observed in the average concentration of ingested MPs between oysters from TSB and SQB. In each bay, the highest concentrations were observed during winter. Seasonal differences between MP concentrations were only found in TSB. During summer, the content of MPs was compared between the digestive system and the rest of the soft tissue in organisms from each site, and statistically significant differences were not observed, except by one site in SQB. Polymers were identified via μ-FTIR-ATR spectrometry. Polyester, polyacrylonitrile, and rayon were the most common plastics detected. However, due to the low concentration of MPs found in oysters, its consumption does not represent a risk to human health. Moreover, MP concentrations in organisms appear to respond to variables, such as temporality and the water circulation dynamics within the bays.
显示更多 [+] 显示较少 [-]Benthic microbial diversity trends in response to heavy metals in an oxygen-deficient eutrophic bay of the Humboldt current system offshore the Atacama Desert
2021
Zárate, Ana | Dorador, Cristina | Valdés, Jorge | Molina, Verónica | Icaza, Gonzalo | Pacheco, Aldo S. | Castillo, Alexis
Mejillones Bay is a coastal ecosystem situated in an oxygen-deficient upwelling area impacted by mining activities in the coastal desert region of northern Chile, where conspicuous microbial life develops in the sediments. Herein, heavy metal (loid)s (HMs) such as Cu, Pb, As, Zn, Al, Fe, Cd, Mo, Ni and V as well as benthic microbial communities were studied using spectrometry and iTag-16 S rRNA sequencing. Samples were taken from two contrasting sedimentary localities in the Bay named Punta Rieles (PR) and Punta Chacaya (PC) within 10–50 m water-depth gradient. PR sediments were organic matter rich (21.1% of TOM at 50 m) and overlaid with low-oxygen waters (<0.06 ml O2/L bottom layer) compared with PC. In general, HMs like Al, Ni, Cd, As and Pb tended to increase in concentration with depth in PR, while the opposite pattern was observed in PC. In addition, PR presented a higher number of unique families (72) compared to PC (35). Among the top ten microbial families, Desulfobulbaceae (4.6% vs. 3.2%), Flavobacteriaceae (2.8% vs. 2.3%) and Anaerolineaceae (3.3% vs. 2.3%) dominated in PR, meanwhile Actinomarinales_Unclassified (8.1% vs. 4.2%) and Sandaracinaceae (4.4% vs. 2.0%) were more abundant in PC. Multivariate analyses confirmed that water depth-related variation was a good proxy for oxygen conditions and metal concentrations, explaining the structure of benthic microbial assemblages. Cd, Ni, As and Pb showed uniformly positive associations with communities that represented the keystone taxa in the co-occurrence network, including Anaerolineaceae, Thiotrichaceae, Desulfobulbaceae, Desulfarculaceae and Bacteroidales_unclassified communities. Collectively, these findings provide new insights for establishing the ecological interconnections of benthic microorganisms in response to metal contamination in a coastal upwelling environment.
显示更多 [+] 显示较少 [-]Elucidating the structural variation of membrane concentrated landfill leachate during Fenton oxidation process using spectroscopic analyses
2020
Teng, Chunying | Zhou, Kanggen | Zhang, Zhang | Peng, Changhong | Chen, Wei
Membrane concentrated landfill leachate (MCLL) contains large amounts of recalcitrant organic matter that cause potential hazards to the environment. Knowledge on the compositional variation of MCLL during treatment is important for a better understanding on the degradation pathway of organic pollutants. In this work, the structural change of MCLL during Fenton oxidation process was examined using spectroscopic techniques. The removal rates of COD, TOC and UV254 reached 78.9 ± 1.3%, 70.2 ± 1.4% and 90.64 ± 1.6%, respectively, under the optimal condition (i.e., dosage of H2O2 = 9.0 mL/200 mL, H2O2/Fe(II) molar ratio = 3.0, pH = 3.0, time = 40 min). Spectral analyses suggested that aromatic/CC structure and CO bonds in MCLL can be successfully destroyed by Fenton oxidation, resulting in a decrease in molecular weight. One fulvic-like and one humic-like components were identified in MCLL, both of which can be removed by Fenton treatment. In addition, two-dimensional correlation spectroscopic analyses suggested the oxidative changes of MCLL structure in the order of fulvic-like component/unsaturated conjugated bond > aromatic structure > humic-like component. The results may provide a new insight to the understanding on the structure variation of MCLL during treatment, which is beneficial for the design of cost-effective treatment strategies.
显示更多 [+] 显示较少 [-]