细化搜索
结果 1-10 的 92
β-Glucosidases as dominant dose-dependent regulators of Oryza sativa L. in response to typical organic pollutant exposures
2022
Shao, Zexi | Liu, Na | Wang, Wei | Zhu, Lizhong
Understanding the metabolic defense and compensation to maintain homeostasis is crucial for assessing the potential health risk of organic pollutants in crops. Currently, limited understanding is available regarding the targeted metabolic pathways and response mechanism under contaminant stress. This study showed that ciprofloxacin (CIP) at the environmental concentrations (1, 5, 25, 50 mg/L) did not significantly inhibit growth or cause severe oxidative damage to rice (Oryza sativa L.). Instead, the increment in CIP concentration induced a series of sequential metabolic disorders, which were characterized predominantly by primary and secondary metabolic disturbances, including phenylpropanoid biosynthesis, the carbohydrate, lipid and amino acid metabolism. After CIP in vivo exceeded a certain threshold level (>0.29 mg/g dry weight), β-glucosidases (BGLUs) mediated the transition from the activation of the genes related to phenylpropanoid biosynthesis to the inhibition of the genes related to carbohydrate metabolism in rice. In particular, starch and sucrose metabolism showed the most profound perturbation stressed by environmental concentrations of CIP (5 mg/L) and other tested organic pollutants (10 μg/L of tricyclazole, thiamethoxam, polybrominated diphenyl ethers, and polychlorinated biphenyls). Besides, the key genes encoding endoglucanase and BGLU were significantly downregulated (|log₂FC| > 3.0) under 100 μg/L of other tested organic pollutants, supporting the transition from the activation of secondary defense metabolism to the disruption of primary energy metabolism. Thus, in addition to bioaccumulation, changes in BGLU activity and starch and sucrose metabolism can reflect the potential adverse effects of pollutants on rice. This study explained the stepwise metabolic and transcriptional responses of rice to organic pollutants, which provided a new reference for the comprehensive evaluation of their environmental risks.
显示更多 [+] 显示较少 [-]Natural additives contribute to hydrocarbon and heavy metal co-contaminated soil remediation
2022
Cavazzoli, Simone | Selonen, Ville | Rantalainen, Anna-Lea | Sinkkonen, Aki | Romantschuk, Martin | Squartini, Andrea
A biological treatment method was tested in laboratory conditions for the removal of hydrocarbons contained in a waste disposal soil sample consisting of excavated sandy soil from a former fueling station. Two fractions of hydrocarbons were quantified by GC-FID: diesel (C₁₀–C₂₁) and lubricant oil (C₂₂–C₄₀). Meat and bone meal (MBM, 1% w/w) was used as a bio-stimulant agent for soil organisms. Cyclodextrin, an oligosaccharide produced from starch by enzymatic conversion, was also used to assess its ability to improve the bioavailability/biodegradability of hydrocarbons in the soil. Parameters such as temperature, pH, water content and aeration (O₂ availability) were monitored and optimized to favor degradation processes. Two different experimental tests were prepared: one to measure the degradation of hydrocarbons; the other to monitor the mobility of some elements in the soil and in the leachate produced by watering with tap water. Soil samples treated with MBM and cyclodextrin showed, over time, a greater removal of the more persistent hydrocarbon fraction (lubricant oil). MBM-treated soils underwent a faster hydrocarbon removal kinetic, especially in the first treatment period. However, the final hydrocarbon concentrations are comparable in all treatments, including control. Over time, the effect of cyclodextrin on hydrocarbon degradation seemed to be relevant. MBM-treated soils sequestered lead in the very first weeks. These results highlight the intrinsic capacity of soil, and its indigenous microbial communities, to degrade petroleum hydrocarbons and suggest that MBM-induced bioremediation is a promising, environmentally friendly technology which should be considered when dealing with hydrocarbon/heavy metal co-contaminated soils.
显示更多 [+] 显示较少 [-]Ammonium detoxification mechanism of ammonium-tolerant duckweed (Landoltia punctata) revealed by carbon and nitrogen metabolism under ammonium stress
2021
Tian, Xueping | Fang, Yang | Jin, Elaine | Yi, Zhuolin | Li, Jinmeng | Du, Anping | He, Kaize | Huang, Yuhong | Zhao, Hai
In this work, the ammonium-tolerant duckweed Landoltia punctata 0202 was used to study the effect of ammonium stress on carbon and nitrogen metabolism and elucidate the detoxification mechanism. The growth status, protein and starch content, and activity of nitrogen assimilation enzymes were determined, and the transcriptional levels of genes involved in ion transport and carbon and nitrogen metabolism were investigated. Under high ammonium stress, the duckweed growth was inhibited, especially when ammonium was the sole nitrogen source. Ammonium might mainly enter cells via low-affinity transporters. The stimulation of potassium transport genes suggested sufficient potassium acquisition, precluding cation deficiency. In addition, the up-regulation of ammonium assimilation and transamination indicated that excess ammonium could be incorporated into organic nitrogen. Furthermore, the starch content increased from 3.97% to 16.43% and 26.02% in the mixed-nitrogen and ammonium-nitrogen groups, respectively. And the up-regulated starch synthesis, degradation, and glycolysis processes indicated that the accumulated starch could provide sufficient carbon skeletons for excess ammonium assimilation. The findings of this study illustrated that the coordination of carbon and nitrogen metabolism played a vital role in the ammonium detoxification mechanism of duckweeds.
显示更多 [+] 显示较少 [-]Is guava phenolic metabolism influenced by elevated atmospheric CO2?
2015
Mendes de Rezende, Fernanda | Pereira de Souza, Amanda | Buckeridge, Marcos Silveira | Maria Furlan, Cláudia
Seedlings of Psidium guajava cv. Pedro Sato were distributed into four open-top chambers: two with ambient CO2 (∼390 ppm) and two with elevated CO2 (∼780 ppm). Monthly, five individuals of each chamber were collected, separated into root, stem and leaves and immediately frozen in liquid nitrogen. Chemical parameters were analyzed to investigate how guava invests the surplus carbon. For all classes of phenolic compounds analyzed only tannins showed significant increase in plants at elevated CO2 after 90 days. There was no significant difference in dry biomass, but the leaves showed high accumulation of starch under elevated CO2. Results suggest that elevated CO2 seems to be favorable to seedlings of P. guajava, due to accumulation of starch and tannins, the latter being an important anti-herbivore substance.
显示更多 [+] 显示较少 [-]Impact of elevated CO2 and elevated O3 on Beta vulgaris L.: Pigments, metabolites, antioxidants, growth and yield
2013
Kumari, Sumita | Agrawal, Madhoolika | Tiwari, Supriya
The present study was conducted to assess morphological, biochemical and yield responses of palak (Beta vulgaris L. cv Allgreen) to ambient and elevated levels of CO2 and O3, alone and in combination. As compared to the plants grown in charcoal filtered air (ACO2), growth and yield of the plants increased under elevated CO2 (ECO2) and decreased under combination of ECO2 with elevated O3 (ECO2 + EO3), ambient O3 (ACO2 + AO3) and elevated O3 (EO3). Lipid peroxidation, ascorbic acid, catalase and glutathione reductase activities enhanced under all treatments and were highest in EO3. Foliar starch and organic carbon contents increased under ECO2 and ECO2 + EO3 and reduced under EO3 and ACO2 + AO3. Foliar N content declined in all treatments compared to ACO2 resulting in alteration of C/N ratio. This study concludes that ambient level of CO2 is not enough to counteract O3 impact, but elevated CO2 has potential to counteract the negative effects of future O3 level.
显示更多 [+] 显示较少 [-]Effect of ammonia stress on carbon metabolism in tolerant aquatic plant—Myriophyllum aquaticum
2020
Gao, Jingqing | Liu, Lina | Ma, Na | Yang, Jiao | Dong, Zekun | Zhang, Jingshen | Zhang, Jinliang | Cai, Ming
In this study, the tips of Myriophyllum aquaticum (M. aquaticum) plants were planted in open-top plastic bins and treated by simulated wastewater with various ammonium-N concentrations for three weeks. The contents of related carbohydrates and key enzyme activities of carbon metabolism were measured, and the mechanisms of carbon metabolism regulation of the ammonia tolerant plant M. aquaticum under different ammonium-N levels were investigated. The decrease in total nonstructural carbohydrates, soluble sugars, sucrose, fructose, reducing sugar and starch content of M. aquaticum were induced after treatment with ammonium-N during the entire stress process. This finding showed that M. aquaticum consumed a lot of carbohydrates to provide energy during the detoxification process of ammonia nitrogen. Moreover, ammonia-N treatment led to the increase in the activitives of invertase (INV) and sucrose synthase (SS), which contributed to breaking down more sucrose to provide substance and energy for plant cells. Meanwhile, the sucrose phosphate synthase (SPS) activity was also enhanced under stress of high concentrations of ammonium-N, especially on day 21. The result indicated that under high-concentration ammonium-N stress, SPS activity can be significantly stimulated by regulating carbon metabolism of M. aquaticum, thereby accumulating sucrose in the plant body. Taken together, M. aquaticum can regulate the transformation of related carbohydrates in vivo by highly efficient expression of INV, SPS and SS, and effectively regulate the osmotic potential, thereby delaying the toxicity of ammonia nitrogen and improving the resistance to stress. It is very important to study carbon metabolism under ammonia stress to understand the ammonia nitrogen tolerance mechanism of M. aquaticum.
显示更多 [+] 显示较少 [-]High carbohydrate diet partially protects Nile tilapia (Oreochromis niloticus) from oxytetracycline-induced side effects
2020
Limbu, Samwel Mchele | Zhang, Han | Luo, Yuan | Chen, Li-Qiao | Zhang, Meiling | Du, Zhen-Yu
Antibiotics used in global aquaculture production cause various side effects, which impair fish health. However, the use of dietary composition such as carbohydrate, which is one of the dominant components in fish diets to attenuate the side effects induced by antibiotics, remains unclear. We determined the ability of high carbohydrate diet to protect Nile tilapia (Oreochromis niloticus) from oxytetracycline-induced side effects. Triplicate groups of thirty O. niloticus (9.50 ± 0.08 g) were fed on medium carbohydrate (MC; 335 g/kg) and high carbohydrate (HC; 455 g/kg) diets without and with 2.00 g/kg diet of oxytetracycline (80 mg/kg body weight/day) hereafter, MCO and HCO for 35 days. Thereafter, we assessed growth performance, hepatic nutrients composition and metabolism, microbiota abundance, immunity, oxidative and cellular stress, hepatotoxicity, lipid peroxidation and apoptosis. To understand the possible mechanism of carbohydrate protection on oxytetracycline, we assessed the binding effects and efficiencies of mixtures of medium and high starch with oxytetracycline as well as the MCO and HCO diets. The O. niloticus fed on the MCO and HCO diets had lower growth rate, nutrients utilization and survival rate than those fed on the MC and HC diets, respectively. Dietary HCO increased hepatosomatic index and hepatic protein content of O. niloticus than MCO diet. The O. niloticus fed on the HCO diet had lower mRNA expression of genes related to protein, glycogen and lipid metabolism compared to those fed on the MCO diet. Feeding O. niloticus on the HCO diet increased innate immunity and reduced pathogenic bacteria, pro-inflammation, hepatotoxicity, cellular stress and apoptosis than the MCO diet. The high starch with oxytetracycline and HCO diet had higher-oxytetracycline binding effects and efficiencies than the medium starch with oxytetracyline and MCO diet, respectively. Our study demonstrates that, high carbohydrate partially protects O. niloticus from oxytetracycline-induced side effects by binding the antibiotic. Incorporating high carbohydrate in diet formulation for omnivorous fish species alleviates some of the side effects caused by antibiotics.
显示更多 [+] 显示较少 [-]Interactive effects of pH and aluminum on the secretion of organic acid anions by roots and related metabolic factors in Citrus sinensis roots and leaves
2020
Yang, Tao-Yu | Qi, Yi-Ping | Huang, Hui-Yu | Wu, Fenglin | Huang, Wei-Tao | Deng, Chong-Ling | Yang, Lin-Tong | Chen, Li-Song
Low pH and aluminum (Al)-toxicity often coexist in acidic soils. Citrus sinensis seedlings were treated with nutrient solution at a pH of 2.5, 3.0, 3.5 or 4.0 and an Al concentration of 0 or 1 mM for 18 weeks. Thereafter, malate, citrate, isocitrate, acid-metabolizing enzymes, and nonstructural carbohydrates in roots and leaves, and release of malate and citrate from roots were measured. Al concentration in roots and leaves increased under Al-toxicity, but it declined with elevating nutrient solution pH. Al-toxicity increased the levels of glucose, fructose, sucrose and total soluble sugars in leaves and roots at each given pH except for a similar sucrose level at pH 2.5–3.0, but it reduced or did not alter the levels of starch and total nonstructural carbohydrates (TNC) in leaves and roots with the exception that Al improved TNC level in roots at pH 4.0. Levels of nonstructural carbohydrates in roots and leaves rose with reducing pH with a few exceptions with or without Al-toxicity. A potential model for the possible role of root organic acid (OA) metabolism (anions) in C. sinensis Al-tolerance was proposed. With Al-toxicity, the elevated pH upregulated the OA metabolism, and increased the flow of carbon to OA metabolism, and the accumulation of malate and citrate in roots and subsequent release of them, thus reducing root and leaf Al and hence eliminating Al-toxicity. Without Al-toxicity, low pH stimulated the exudation of malate and citrate, an adaptive response of Citrus to low pH. The interactive effects of pH and pH on OA metabolism were different between roots and leaves.
显示更多 [+] 显示较少 [-]Toxicity of 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) in the marine decapod Litopenaeus vannamei
2019
Su, Yujie | Li, Huifeng | Xie, Jia | Xu, Chang | Dong, Yangfan | Han, Fenglu | Qin, Jian G. | Chen, Liqiao | Li, Erchao
DCOIT (4,5-dichloro-2-n-octyl-4-isothiazolin-3-one) is the main component of SeaNine-211, a new antifouling agent that replaces tributyltin to prevent the growth of undesirable organisms on ships. There have been some studies on the toxicity of DCOIT, but the mechanism of DCOIT’s toxicity to crustaceans still requires elucidation. This study examined the chronic toxicity (4 weeks) of 0, 3, 15, and 30 μg/L DCOIT to the Pacific white shrimp (Litopenaeus vannamei) from the aspects of growth and physiological and histological changes in the hepatopancreas and gills. A transcriptomic analysis was performed on the hepatopancreas to reveal the underlying mechanism of DCOIT in shrimp. The exposure to 30 μg/L DCOIT significantly reduced the survival and weight gain of L. vannamei. High Na⁺/K⁺-ATPase activity and melanin deposition were found in the gills after 4 weeks of 15 μg/L or 30 μg/L DCOIT exposure. The highest concentration of DCOIT (30 μg/L) induced changes in hepatopancreatic morphology and metabolism, including high anaerobic respiration and the accumulation of triglycerides. Compared with the exposure to 3 μg/L DCOIT, shrimp exposed to 15 μg/L DCOIT showed more differentially expressed genes (DEGs) than those in the control, and these DEGs were involved in biological processes such as starch and sucrose metabolism and choline metabolism in cancer. The findings of this study indicate that L. vannamei is sensitive to the antifouling agent DCOIT and that DCOIT can induce altered gene expression at a concentration of 15 μg/L and can interfere with shrimp metabolism, growth and survival at 30 μg/L.
显示更多 [+] 显示较少 [-]Ozone effects on wheat grain quality – A summary
2015
Broberg, Malin C. | Feng, Zhaozhong | Xin, Yue | Pleijel, Håkan
We synthesized the effects of ozone on wheat quality based on 42 experiments performed in Asia, Europe and North America. Data were analysed using meta-analysis and by deriving response functions between observed effects and daytime ozone concentration. There was a strong negative effect on 1000-grain weight and weaker but significant negative effects on starch concentration and volume weight. For protein and several nutritionally important minerals (K, Mg, Ca, P, Zn, Mn, Cu) concentration was significantly increased, but yields were significantly decreased by ozone. For other minerals (Fe, S, Na) effects were not significant or results inconclusive. The concentration and yield of potentially toxic Cd were negatively affected by ozone. Some baking properties (Zeleny value, Hagberg falling number) were positively influenced by ozone. Effects were similar in different exposure systems and for spring and winter wheat. Ozone effects on quality should be considered in future assessments of food security/safety.
显示更多 [+] 显示较少 [-]