细化搜索
结果 1-10 的 45
Measurement of hair thyroid and steroid hormone concentrations in the rat evidence endocrine disrupting potential of a low dose mixture of polycyclic aromatic hydrocarbons
2022
Peng, Feng-Jiao | Palazzi, Paul | Viguié, Catherine | Appenzeller, Brice M.R. | Luxembourg Institute of Health (LIH) | Exposition, Perturbation Endocrino-métabolique et Reproduction (ToxAlim-EXPER) ; ToxAlim (ToxAlim) ; Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole Nationale Vétérinaire de Toulouse (ENVT) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Ecole d'Ingénieurs de Purpan (INP - PURPAN) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole Nationale Vétérinaire de Toulouse (ENVT) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Ecole d'Ingénieurs de Purpan (INP - PURPAN) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | ToxAlim (ToxAlim) ; Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole Nationale Vétérinaire de Toulouse (ENVT) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Ecole d'Ingénieurs de Purpan (INP - PURPAN) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | This work was financially supported by the Luxembourg Ministere de l'Enseignement Superieur et de la Recherche (MESR).
International audience | Polycyclic aromatic hydrocarbons (PAHs) have been shown to influence endogenous hormones levels in animal models, but little is known about the effects of their mixtures. For hormone measurements, hair analysis is a promising approach to provide information on long-term status of hormones. Herein we used hair analysis to assess the combined effects of 13 PAHs on steroid and thyroid hormones levels in a rat model. The PAH mixture was administered orally three times per week to female rats at doses of 0, 10, 20, 40, 80, 200, 400 and 800 μg/kg of body weight for each compound over a 90-day exposure period. Fourteen out of 36 analyzed hormones were detected in rat hair, including pregnenolone (P5), 17α-hydroxyprogesterone (17-OHP4), corticosterone (CORT), dehydroepiandrosterone (DHEA), androstenedione (AD), 3,3'-diiodo-L-thyronine (T2), 3,3',5-triiodo-L-thyronine (T3), and 3,5,3',5'-triiodo-L-thyronine (T4). The PAH mixture significantly elevated P5 and DHEA levels at the doses of 200 and 400 μg/kg but reduced T2 and T3 levels at the highest dose as compared to the control. While P5, DHEA, 17-OHP4 and AD concentrations exhibited inverted U-shaped dose responses, T2, T3 and T4 concentrations exhibited inverse linear dose responses, which are further confirmed by their relationships with hair hydroxylated PAHs (OH-PAHs) concentrations. Likewise, there were significant nonmonotonic relationships of hormone molar ratios (e.g., AD/17-OHP4 and DHEA/CORT ratios) with exposure intensity and OH-PAHs. Overall, our results demonstrate the capability of PAH mixtures to interfere with steroid and thyroid hormones in female rats.
显示更多 [+] 显示较少 [-]Measurement of hair thyroid and steroid hormone concentrations in the rat evidence endocrine disrupting potential of a low dose mixture of polycyclic aromatic hydrocarbons
2022
Peng, Feng-Jiao | Palazzi, Paul | Viguié, Catherine | Appenzeller, Brice M.R. | Luxembourg Institute of Health (LIH) | Exposition, Perturbation Endocrino-métabolique et Reproduction (ToxAlim-EXPER) ; ToxAlim (ToxAlim) ; Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole Nationale Vétérinaire de Toulouse (ENVT) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Ecole d'Ingénieurs de Purpan (INP - PURPAN) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole Nationale Vétérinaire de Toulouse (ENVT) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Ecole d'Ingénieurs de Purpan (INP - PURPAN) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | This work was financially supported by the Luxembourg Ministere de l'Enseignement Superieur et de la Recherche (MESR).
International audience | Polycyclic aromatic hydrocarbons (PAHs) have been shown to influence endogenous hormones levels in animal models, but little is known about the effects of their mixtures. For hormone measurements, hair analysis is a promising approach to provide information on long-term status of hormones. Herein we used hair analysis to assess the combined effects of 13 PAHs on steroid and thyroid hormones levels in a rat model. The PAH mixture was administered orally three times per week to female rats at doses of 0, 10, 20, 40, 80, 200, 400 and 800 μg/kg of body weight for each compound over a 90-day exposure period. Fourteen out of 36 analyzed hormones were detected in rat hair, including pregnenolone (P5), 17α-hydroxyprogesterone (17-OHP4), corticosterone (CORT), dehydroepiandrosterone (DHEA), androstenedione (AD), 3,3'-diiodo-L-thyronine (T2), 3,3',5-triiodo-L-thyronine (T3), and 3,5,3',5'-triiodo-L-thyronine (T4). The PAH mixture significantly elevated P5 and DHEA levels at the doses of 200 and 400 μg/kg but reduced T2 and T3 levels at the highest dose as compared to the control. While P5, DHEA, 17-OHP4 and AD concentrations exhibited inverted U-shaped dose responses, T2, T3 and T4 concentrations exhibited inverse linear dose responses, which are further confirmed by their relationships with hair hydroxylated PAHs (OH-PAHs) concentrations. Likewise, there were significant nonmonotonic relationships of hormone molar ratios (e.g., AD/17-OHP4 and DHEA/CORT ratios) with exposure intensity and OH-PAHs. Overall, our results demonstrate the capability of PAH mixtures to interfere with steroid and thyroid hormones in female rats.
显示更多 [+] 显示较少 [-]Size-dependent impact of polystyrene microplastics on the toxicity of cadmium through altering neutrophil expression and metabolic regulation in zebrafish larvae
2021
Qin, Li | Duan, Zhenghua | Cheng, Haodong | Wang, Yudi | Zhang, Haihong | Zhu, Zhe | Wang, Lei
Insufficient evidence exists regarding the visible physiological toxic endpoints of MPs exposures on zebrafish larvae due to their small sizes. Herein, the impacts of micro-polystyrene particles (μ-PS) and 100 nm polystyrene particles (n-PS) on the toxicity of cadmium (Cd) through altering neutrophil expressions were identified and quantified in the transgenic zebrafish (Danio rerio) larvae Tg(lyz:DsRed2), and the effects were size-dependent. When exposed together with μ-PS, the amount of neutrophils in Cd treated zebrafish larvae decreased by 25.56% through reducing Cd content in the larvae. By contrast, although n-PS exposure caused lower Cd content in the larvae, the expression of neutrophils under their combined exposure remained high. The mechanism of immune toxicity was analyzed based on the results of metabonomics. n-PS induced high oxidative stress in the larvae, which promoted taurine metabolism and unsaturated fatty biosynthesis in n-PS + Cd treatment. This observation was accordance with the significant inhibition of the activities of superoxide dismutase and catalase enzymes detected in their combined treatment. Moreover, n-PS promoted the metabolic pathways of catabolic processes, amino acid metabolism, purine metabolism, and steroid hormone biosynthesis in Cd treated zebrafish larvae. Nanoplasctis widely coexist with other pollutants in the environment at relatively low concentrations. We conclude that more bio-markers of immune impact should be explored to identify their toxicological mechanisms and mitigate the effects on the environment.
显示更多 [+] 显示较少 [-]Molecular insights into ovary degeneration induced by environmental factors in female oriental river prawns Macrobrachium nipponense
2019
Fu, Chunpeng | Li, Fajun | Wang, Lifang | Li, Tingting
The oriental river prawn, Macrobrachium nipponense, is an important breeding species in China. The ovary development of this prawn is regulated by the genetic factors and external environmental factors and has obvious seasonal regularity. However, the molecular mechanism of regulating ovary degradation in M. nipponense remains unclear. To address this issue, we performed transcriptome sequencing and gene expression analyses of eyestalks, cerebral ganglia (CG) and thoracic ganglia (TG) of female M. nipponense between the full ovary stage and degenerate ovary stage. Differentially expressed genes enrichment analysis results identified several important pathways such as “phototransduction-fly,” “circadian rhythm-fly” and “steroid hormone biosynthesis secretion.” In the period of ovarian degeneration, the expressions of Tim, Per2 and red pigment concentration hormone (RPCH) were significantly decreased in the eyestalk, CG and TG. And expression of 7 genes in the steroid synthesis pathway, including steryl-sulfatase, cytochrome P450 family 1 subfamily A polypeptide 1, estradiol 17β-dehydrogenase 2, glucuronosyltransferase, 3-oxo-5-alpha-steroid 4-dehydrogenase 1, estradiol 17-dehydrogenase 1 and estrone sulfotransferase was significantly decreased in the CG. Food and light signals affect the expression of clock genes and thereby decrease the expression of RPCH and the estradiol synthesis-related genes in the nervous system, which may be the main cause of ovarian degeneration in M. nipponense. The results will contribute to a better understanding of the molecular mechanisms of ovarian development regulation in crustaceans.
显示更多 [+] 显示较少 [-]Examining the relationships between blubber steroid hormones and persistent organic pollutants in common bottlenose dolphins
2019
Galligan, Thomas M. | Balmer, Brian C. | Schwacke, Lori H. | Bolton, Jennie L. | Quigley, Brian M. | Rosel, Patricia E. | Ylitalo, Gina M. | Boggs, Ashley S.P.
Odontocete cetaceans bioaccumulate high concentrations of endocrine disrupting persistent organic pollutants (POPs), including dichlorodiphenyltrichloroethane (DDT), dichlorodiphenyltrichloroethylene (DDE), and dichlorodiphenyldichloroethane (DDD) – collectively DDTs – but few studies have explored DDTs-mediated endocrine disruption in cetaceans. Herein, we use remotely collected blubber biopsies from common bottlenose dolphins (Tursiops truncatus) inhabiting a site with high localized DDTs contamination to study the relationships between DDTs exposure and steroid hormone homeostasis in cetaceans. We quantified blubber steroid hormone concentrations by liquid chromatography-tandem mass spectrometry and blubber POP concentrations by gas chromatography-mass spectrometry. We detected six steroid hormones in blubber, including progesterone (P4), 17-hydroxyprogesterone (17OHP4), androstenedione (AE), testosterone (T), cortisol (F), and cortisone (E). Sampled dolphins (n = 62) exhibited exposure to DDT, DDE, DDD, chlordanes (CHLDs), mirex, dieldrin, hexachlorobenzene, polychlorinated biphenyls (PCBs), and brominated diphenyl ethers (BDEs). Using principal components analysis (PCA), we determined that blubber DDTs primarily loaded to the first principal component (PC1) explaining 81.6% of the total variance in POP exposure, while the remaining POPs primarily loaded to the PC2 (10.4% of variance). PC1 scores were negatively correlated with blubber T in males and blubber F in females, suggesting that exposure to DDTs impacted androgen and corticosteroid homeostasis. These conclusions were further supported by observed negative correlations between T and o,p’-DDE, o,p’-DDD, and p,p’-DDD in males sampled in the fall, and between F and the six individual DDTs and ∑6DDTs in females. Overall, these results suggest that POP-mediated endocrine disruption may have occurred in this stock of dolphins, which could negatively impact their health and fitness. However, this study relied on uncontrolled incidental exposures, making it impossible to establish a causal relationship between DDTs exposure and endocrine effects. Importantly, this study demonstrates that remotely collected blubber biopsies are a useful matrix for studying endocrine disruption in marine mammals.
显示更多 [+] 显示较少 [-]Associations of fluoride exposure with sex steroid hormones among U.S. children and adolescents, NHANES 2013–2016
2020
Bai, Rongpan | Huang, Yun | Wang, Fang | Guo, Jing
Fluoride mediated disruption of sex steroid hormones has been demonstrated in animals. However, evidence from humans was limited and contradictory, especially for children and adolescents. Based on data of the National Health and Nutrition Survey (NHANES) 2013–2016, a total of 3392 subjects aged 6–19 years were analyzed in this cross-sectional study. Both plasma and water fluoride levels were quantified electrometrically using the ion-specific electrode. Sex steroid hormones of total testosterone, estradiol and sex hormone-binding globulin (SHBG) were tested in serum. Percent changes and 95% confidence intervals (CIs) in sex steroid hormones associated with tertiles of fluoride levels (setting the first as reference) were estimated using adjusted linear regression models by stratification of gender and age. Compared with subjects at the first tertile of plasma fluoride, percent changes (95% CIs) in testosterone were −8.08% (−17.36%, 2.25%) and −21.65% (−30.44%, −11.75%) for the second and third tertiles, respectively (P ₜᵣₑₙd <0.001). Male adolescents at the third tertile of plasma fluoride had decreased levels of testosterone (percent change = −21.09%, 95% CIs = −36.61% to −1.77%). Similar inverse associations were also found when investigating the relationships between plasma fluoride and estradiol. Besides, the data indicated decreased levels of SHBG associated with water and plasma fluoride among the male adolescents (percent change of the third tertile = −9.39%, 95% CIs = −17.25% to −0.78%) and female children (percent change of the second tertile = −10.78%, 95% CIs = −17.55% to −3.45%), respectively. The data indicated gender- and age-specific inverse associations of fluoride in plasma and water with sex steroid hormones of total testosterone, estradiol and SHBG in U.S. children and adolescents. Prospective cohort studies are warranted to confirm the causality.
显示更多 [+] 显示较少 [-]Chronic nitrate exposure alters reproductive physiology in fathead minnows
2018
Kellock, Kristen A. | Moore, Adrian P. | Bringolf, Robert B.
Nitrate is a ubiquitous aquatic pollutant that is commonly associated with eutrophication and dead zones in estuaries around the world. At high concentrations nitrate is toxic to aquatic life but at environmental concentrations it has also been purported as an endocrine disruptor in fish. To investigate the potential for nitrate to cause endocrine disruption in fish, we conducted a lifecycle study with fathead minnows (Pimephales promelas) exposed to nitrate (0, 11.3, and 56.5 mg/L (total nitrate-nitrogen (NO3-N)) from <24 h post hatch to sexual maturity (209 days). Body mass, condition factor, gonadal somatic index (GSI), incidence of intersex, and vitellogenin induction were determined in mature male and female fish and plasma 11-keto testosterone (11-KT) was measured in males only. In nitrate-exposed males both 11-KT and vitellogenin were significantly induced when compared with controls. No significant differences occurred for body mass, condition factor, or GSI among males and intersex was not observed in any of the nitrate treatments. Nitrate-exposed females also had significant increases in vitellogenin compared to controls but no significant differences for mass, condition factor, or GSI were observed in nitrate exposed groups. Estradiol was used as a positive control for vitellogenin induction. Our findings suggest that environmentally relevant nitrate levels may disrupt steroid hormone synthesis and/or metabolism in male and female fish and may have implications for fish reproduction, watershed management, and regulation of nutrient pollution.
显示更多 [+] 显示较少 [-]Contaminants of emerging concern presence and adverse effects in fish: A case study in the Laurentian Great Lakes
2018
Jorgenson, Zachary G. | Thomas, Linnea M. | Elliott, Sarah M. | Cavallin, Jenna E. | Randolph, Eric C. | Choy, Steven J. | Alvarez, David A. | Banda, Jo A. | Gefell, Daniel J. | Lee, K. E. (Kathy E.) | Furlong, Edward T. | Schoenfuss, Heiko L.
The Laurentian Great Lakes are a valuable natural resource that is affected by contaminants of emerging concern (CECs), including sex steroid hormones, personal care products, pharmaceuticals, industrial chemicals, and new generation pesticides. However, little is known about the fate and biological effects of CECs in tributaries to the Great Lakes. In the current study, 16 sites on three rivers in the Great Lakes basin (Fox, Cuyahoga, and Raquette Rivers) were assessed for CEC presence using polar organic chemical integrative samplers (POCIS) and grab water samplers. Biological activity was assessed through a combination of in vitro bioassays (focused on estrogenic activity) and in vivo assays with larval fathead minnows. In addition, resident sunfish, largemouth bass, and white suckers were assessed for changes in biological endpoints associated with CEC exposure. CECs were present in all water samples and POCIS extracts. A total of 111 and 97 chemicals were detected in at least one water sample and POCIS extract, respectively. Known estrogenic chemicals were detected in water samples at all 16 sites and in POCIS extracts at 13 sites. Most sites elicited estrogenic activity in bioassays. Ranking sites and rivers based on water chemistry, POCIS chemistry, or total in vitro estrogenicity produced comparable patterns with the Cuyahoga River ranking as most and the Raquette River as least affected by CECs. Changes in biological responses grouped according to physiological processes, and differed between species but not sex. The Fox and Cuyahoga Rivers often had significantly different patterns in biological response Our study supports the need for multiple lines of evidence and provides a framework to assess CEC presence and effects in fish in the Laurentian Great Lakes basin.
显示更多 [+] 显示较少 [-]Relationships between POPs, biometrics and circulating steroids in male polar bears (Ursus maritimus) from Svalbard
2017
Ciesielski, Tomasz M. | Hansen, Ingunn Tjelta | Bytingsvik, Jenny | Hansen, Martin | Lie, Elisabeth | Aars, Jon | Jenssen, Bjørn M. | Styrishave, Bjarne
The aim of this study was to determine the effect of persistent organic pollutants (POPs) and biometric variables on circulating levels of steroid hormones (androgens, estrogens and progestagens) in male polar bears (Ursus maritimus) from Svalbard, Norway (n = 23). Levels of pregnenolone (PRE), progesterone (PRO), androstenedione (AN), dehydroepiandrosterone (DHEA), testosterone (TS), dihydrotestosterone (DHT), estrone (E1), 17α-estradiol (αE2) and 17β-estradiol (βE2) were quantified in polar bear serum by gas chromatography tandem mass spectrometry (GC-MS/MS), while POPs were measured in plasma. Subsequently, associations between hormone concentrations (9 steroids), POPs (21 polychlorinated biphenyls (PCBs), 8 OH-PCBs, 8 organochlorine pesticides (OCPs) and OCP metabolites, and 2 polybrominated diphenyl ethers (PBDEs)) and biological variables (age, head length, body mass, girth, body condition index), capture date, location (latitude and longitude), lipid content and cholesterol levels were examined using principal component analysis (PCA) and orthogonal projections to latent structures (OPLS) modelling. Average concentrations of androgens, estrogens and progestagens were in the range of 0.57–83.7 (0.57–12.4 for subadults, 1.02–83.7 for adults), 0.09–2.69 and 0.57–2.44 nmol/L, respectively. The steroid profiles suggest that sex steroids were mainly synthesized through the Δ-4 pathway in male polar bears. The ratio between androgens and estrogens significantly depended on sexual maturity with androgen/estrogen ratios being approximately 60 times higher in adult males than in subadult males. PCA plots and OPLS models indicated that TS was positively related to biometrics, such as body condition index in male polar bears. A negative relationship was also observed between POPs and DHT. Consequently, POPs and body condition may potentially affect the endocrinological function of steroids, including development of reproductive tissues and sex organs and the general condition of the male polar bears.
显示更多 [+] 显示较少 [-]In vivo and In vitro neurochemical-based assessments of wastewater effluents from the Maumee River area of concern
2016
Arini, Adeline | Cavallin, Jenna E. | Berninger, Jason P. | Marfil-Vega, Ruth | Mills, Marc | Villeneuve, Daniel L. | Basu, Niladri
Wastewater treatment plant (WWTP) effluents contain potentially neuroactive chemicals though few methods are available to screen for the presence of such agents. Here, two parallel approaches (in vivo and in vitro) were used to assess WWTP exposure-related changes to neurochemistry. First, fathead minnows (FHM, Pimephales promelas) were caged for four days along a WWTP discharge zone into the Maumee River (Ohio, USA). Grab water samples were collected and extracts obtained for the detection of alkylphenols, bisphenol A (BPA) and steroid hormones. Second, the extracts were then used as a source of in vitro exposure to brain tissues from FHM and four additional species relevant to the Great Lakes ecosystem (rainbow trout (RT), river otter (RO), bald eagle (BE) and human (HU)). The ability of the wastewater (in vivo) or extracts (in vitro) to interact with enzymes (monoamine oxidase (MAO) and glutamine synthetase (GS)) and receptors (dopamine (D2) and N-methyl-d-aspartate receptor (NMDA)) involved in dopamine and glutamate-dependent neurotransmission were examined on brain homogenates. In vivo exposure of FHM led to significant decreases of NMDA receptor binding in females (24–42%), and increases of MAO activity in males (2.8- to 3.2-fold). In vitro, alkylphenol-targeted extracts significantly inhibited D2 (66% in FHM) and NMDA (24–54% in HU and RT) receptor binding, and induced MAO activity in RT, RO, and BE brains. Steroid hormone-targeted extracts inhibited GS activity in all species except FHM. BPA-targeted extracts caused a MAO inhibition in FHM, RT and BE brains. Using both in vivo and in vitro approaches, this study shows that WWTP effluents contain agents that can interact with neurochemicals important in reproduction and other neurological functions. Additional work is needed to better resolve in vitro to in vivo extrapolations (IVIVE) as well as cross-species differences.
显示更多 [+] 显示较少 [-]