细化搜索
结果 1-10 的 142
New critical levels for ozone effects on young trees based on AOT 40 and simulated leaf uptake of ozone
2004
Karlsson, Pererik | Uddling, Johan | Braun, Sabine | Broadmeadow, Mark | Elvira, Susana | Gimeno, Benjamin | Le Thiec, Didier, | Oksanen, Elina | Vandermeiren, Karine | Wilkinson, Matthew | Emberson, Lisa
New critical levels for ozone effects on young trees based on AOT 40 and simulated leaf uptake of ozone
2004
Karlsson, Pererik | Uddling, Johan | Braun, Sabine | Broadmeadow, Mark | Elvira, Susana | Gimeno, Benjamin | Le Thiec, Didier | Oksanen, Elina | Vandermeiren, Karine | Wilkinson, Matthew | Emberson, Lisa | Swedish Environmental Research Institute (IVL) | Department of Plant and Environmental Sciences ; Göteborgs Universitet = University of Gothenburg (GU) | Institute for Applied Plant Biology ; Partenaires INRAE | Forest Research [Great Britain] | Ecotoxicidad de la Contaminacion Atmosferica ; Partenaires INRAE | Ecologie et Ecophysiologie Forestières [devient SILVA en 2018] (EEF) ; Institut National de la Recherche Agronomique (INRA)-Université de Lorraine (UL) | University of Joensuu | Sciensano [Bruxelles] ; Pasteur Network (Réseau International des Instituts Pasteur) | Stockholm Environment Institute at York (SEI-YORK) ; University of York [York, UK]
International audience
显示更多 [+] 显示较少 [-]Rhizophagus irregularis enhances tolerance to cadmium stress by altering host plant hemp (Cannabis sativa L.) photosynthetic properties
2022
Sun, Simiao | Feng, Yuhan | Huang, Guodong | Zhao, Xu | Song, Fuqiang
Arbuscular mycorrhizal fungi (AMF) are widespread and specialized soil symbiotic fungi, and the establishment of their symbiotic system is of great importance for adversity adaptation. To reveal the growth and photosynthetic characteristics of AMF–crop symbionts in response to heavy metal stress, this experiment investigated the effects of Rhizophagus irregularis (Ri) inoculation on the growth, photosynthetic gas exchange parameters, and chlorophyll fluorescence characteristics of hemp (Cannabis sativa L.) at a Cd concentration of 80 mg/kg. The results showed that (1) under Cd stress, the biomass of each plant structure in the Ri treatment was significantly higher than that in the noninoculation treatment (P < 0.05); (2) under Cd stress, the transpiration rate, stomatal conductance, net photosynthetic rate, PSII efficiency, apparent electron transport rate and photochemical quenching coefficient of the Ri inoculation group reached a maximum, with increases ranging from 1% to 28%; (3) inoculation of Ri significantly reduced Cd enrichment in leaves, which in turn significantly increased the transpiration rate, stomatal conductance, electron transfer rate, net photosynthetic rate and photosynthetic intensity, protecting PSII (P < 0.05); and (4) by measuring the light response curves of different treatments, the light saturation points of hemp inoculated with the Ri treatment reached 1448.4 μmol/m²/s, and the optical compensation point reached 24.0 μmol/m²/s under Cd stress. The Ri–hemp symbiont demonstrated high adaptability to weak light and high utilization efficiency of strong light under Cd stress. Our study showed that Ri–hemp symbiosis improves adaptation to Cd stress and promotes plant growth by regulating the photosynthetic gas exchange parameters and chlorophyll fluorescence parameters of plants. The Ri–hemp symbiosis is a promising technology for improving the productivity of Cd-contaminated soil.
显示更多 [+] 显示较少 [-]Nocturnal pollutant uptake contributes significantly to the total stomatal uptake of Mangifera indica
2022
Datta, Savita | Sharma, Anita | Sinha, Baerbel
DO₃SE (Deposition of Ozone for Stomatal Exchange), is a dry deposition model, designed to assess tropospheric ozone risk to vegetation, and is based on two alternative algorithms to estimate stomatal conductance: multiplicative and photosynthetic. The multiplicative model has been argued to perform better for leaf-level and regional-level application. In this study, we demonstrate that the photosynthetic model is superior to the multiplicative model even for leaf-level studies using measurements performed on Mangifera indica. We find that the multiplicative model overestimates the daytime stomatal conductance, when compared with measured stomatal conductance and prescribes zero conductance at night while measurements show an average conductance of 100 mmol(H₂O)m⁻²s⁻¹ between 9 p.m. and 4 a.m. The daytime overestimation of the multiplicative model can be significantly reduced when the model is modified to include a response function for ozone-induced stomatal closure. However, nighttime pollutant uptake fluxes can only be accurately assessed with the photosynthetic model which includes the stomatal opening at night during respiration and is capable of reproducing the measured nighttime stomatal conductance. At our site, the nocturnal flux contributes 64%, 39%, 46%, and 88% of the total for NO₂ uptake in winter, summer, monsoon, and post-monsoon, respectively. For SO₂, nocturnal uptake amounts to 35%, 28%, 28%, and 44% in winter, summer, monsoon, and post-monsoon, respectively while for ozone the nighttime uptake contributes 30%, 17%, 18%, and 29% of the total stomatal uptake in winter, summer, monsoon, and post-monsoon respectively.
显示更多 [+] 显示较少 [-]Biochar mitigates arsenic-induced human health risks and phytotoxicity in quinoa under saline conditions by modulating ionic and oxidative stress responses
2021
Shabbir, Arslan | Saqib, Muhammad | Murtaza, Ghulam | Abbas, Ghulam | Imran, Muhammad | Rizwan, Muhammad | Naeem, Muhammad Asif | Ali, Shafaqat | Rashad Javeed, Hafiz Muhammad
Arsenic (As) is a toxic metalloid and its widespread contamination in agricultural soils along with soil salinization has become a serious concern for human health and food security. In the present study, the effect of cotton shell biochar (CSBC) in decreasing As-induced phytotoxicity and human health risks in quinoa (Chenopodium quinoa Willd.) grown on As-spiked saline and non-saline soils was evaluated. Quinoa plants were grown on As contaminated (0, 15 and 30 mg kg⁻¹) saline and non-saline soils amended with 0, 1 and 2% CSBC. Results showed that plant growth, grain yield, stomatal conductance and chlorophyll contents of quinoa showed more decline on As contaminated saline soil than non-saline soil. The application of 2% CSBC particularly enhanced plant growth, leaf relative water contents, stomatal conductance, pigment contents and limited the uptake of As and Na as compared to soil without CSBC. Salinity in combination with As trigged the production of H₂O₂ and caused lipid peroxidation of cell membranes. Biochar ameliorated the oxidative stress by increasing the activities of antioxidant enzymes (SOD, POD, CAT). Carcinogenic and non-carcinogenic human health risks were greatly decreased in the presence of biochar. Application of 2% CSBC showed promising results in reducing human health risks and As toxicity in quinoa grown on As contaminated non-saline and saline soils. Further research is needed to evaluate the role of biochar in minimizing As accumulation in other crops on normal as well as salt affected soils under field conditions.
显示更多 [+] 显示较少 [-]Stomatal response drives between-species difference in predicted leaf water-use efficiency under elevated ozone
2021
Xu, Yansen | Shang, Bo | Peng, Jinlong | Feng, Zhaozhong | Tarvainen, Lasse
Ozone-induced changes in the relationship between photosynthesis (Aₙ) and stomatal conductance (gₛ) vary among species, leading to inconsistent water use efficiency (WUE) responses to elevated ozone (O₃). Thus, few vegetation models can accurately simulate the effects of O₃ on WUE. Here, we conducted an experiment exposing two differently O₃-sensitive species (Cotinus coggygria and Magnolia denudata) to five O₃ concentrations and investigated the impact of O₃ exposure on predicted WUE using a coupled Aₙ-gₛ model. We found that increases in stomatal O₃ uptake caused linear reductions in the maximum rates of Rubisco carboxylation (Vcₘₐₓ) and electron transport (Jₘₐₓ) in both species. In addition, a negative linear correlation between O₃-induced changes in the minimal gₛ of the stomatal model (g₀) derived from the theory of optimal stomatal behavior and light-saturated photosynthesis was found in the O₃-sensitive M. denudata. When the O₃ dose-based responses of Vcₘₐₓ and Jₘₐₓ were included in a coupled Aₙ-gₛ model, simulated Aₙ under elevated O₃ were in good agreement with observations in both species. For M. denudata, incorporating the O₃ response of g₀ into the coupled model further improved the accuracy of the simulated gₛ and WUE. In conclusion, the modified Vcₘₐₓ, Jₘₐₓ and g₀ method presented here provides a foundation for improving the prediction for O₃-induced changes in Aₙ, gₛ and WUE.
显示更多 [+] 显示较少 [-]Experimental warming alleviates the adverse effects from tropospheric ozone on two urban tree species
2021
Xu, Sheng | Wang, Yijing | Zhang, Weiwei | Li, Bo | Du, Zhong | He, Xingyuan | Chen, Wei | Zhang, Yue | Li, Yan | Li, Maihe | Schaub, Marcus
Atmospheric warming and increasing tropospheric ozone (O₃) concentrations often co-occur in many cities of the world including China, adversely affecting the health status of urban trees. However, little information is known about the combined and interactive effects from increased air temperature (IT) and elevated O₃ (EO) exposures on urban tree species. Here, Ginkgo biloba and Populus alba ‘Berolinensis’ seedlings were subjected to IT (+2 °C of ambient air temperature) and/or EO (+2-fold ambient air O₃ concentrations) for one growing season by using open-top chambers. IT alone had no significant effect on physiological metabolisms at the early growing stage, but significantly increased photosynthetic parameters, antioxidative enzyme activities (P < 0.05). EO alone decreased physiological parameters except for increased oxidative stress. Compared to EO exposure alone, plants grown under IT and EO combined showed higher antioxidative and photosynthetic activity. There was a significant interactive effect between IT and EO on net photosynthetic rate, stomatal conductance, water use efficiency, the maximum quantum efficiency of PSII photochemistry, the actual quantum efficiency of PSII, enzyme activities, aboveground biomass and root/shoot ratio (P < 0.05), respectively. These results suggested that during one growing season, IT mitigated the adverse effect of EO on the tested plants. In addition, we found that G. biloba was more sensitive than P. alba ‘Berolinensis’ to both IT and EO, suggesting that G. biloba may be a good indicator species for climate warming and air pollution, particularly under environmental conditions as they co-occur in urban areas.
显示更多 [+] 显示较少 [-]Ozone risk assessment is affected by nutrient availability: Evidence from a simulation experiment under free air controlled exposure (FACE)
2018
Zhang, Lu | Hoshika, Yasutomo | Carrari, Elisa | Badea, Ovidiu | Paoletti, Elena
Assessing ozone (O3) risk to vegetation is crucial for informing policy making. Soil nitrogen (N) and phosphorus (P) availability could change stomatal conductance which is the main driver of O3 uptake into a leaf. In addition, the availability of N and P could influence photosynthesis and growth. We thus postulated that the sensitivity of plants to O3 may be changed by the levels of N and P in the soil. In this study, a sensitive poplar clone (Oxford) was subject to two N levels (N0, 0 kg N ha−1; N80, 80 kg N ha−1), three P levels (P0, 0 kg P ha−1; P40, 40 kg P ha−1; P80, 80 kg P ha−1) and three levels of O3 exposure (ambient concentration, AA; 1.5 × AA; 2.0 × AA) for a whole growing season in an O3 free air controlled exposure (FACE) facility. Flux-based (POD0 to 6) and exposure-based (W126 and AOT40) dose-response relationships were fitted and critical levels (CLs) were estimated for a 5% decrease of total annual biomass. It was found that N and P availability modified the dose-response relationships of biomass responses to O3. Overall, the N supply decreased the O3 CLs i.e. increased the sensitivity of poplar to O3. Phosphorus alleviated the O3-caused biomass loss and increased the CL. However, such mitigation effects of P were found only in low N and not in high N conditions. In each nutritional treatment, similar performance was found between flux-based and exposure-based indices. However, the flux-based approach was superior, as compared to exposure indices, to explain the biomass reduction when all nutritional treatments were pooled together. The best O3 metric for risk assessments was POD4, with 4.6 mmol m−2 POD4 as a suitable CL for Oxford poplars grown under various soil N and P conditions.
显示更多 [+] 显示较少 [-]Silicon nutrition lowers cadmium content of wheat cultivars by regulating transpiration rate and activity of antioxidant enzymes
2018
Naeem, Asif | Saifullah, | Saifullah, | Zia-ur-Rehman, Muhammad | Akhtar, Tasneem | Zia, Munir Hussain | Aslam, Muhammad
Given that cadmium (Cd) uptake by plants is linked to transpiration rate and activity of antioxidant enzymes and further that silicon (Si) can regulate them, it was hypothesized that improved Si nutrition could reduce Cd concentration in plants. Thus, present study was carried out to elucidate the positive effect of Si nutrition on the growth, activities of antioxidant enzymes and tissue cadmium (Cd) concentration in Cd-tolerant (Iqbal-2000) and Cd-sensitive wheat (Triticum aestivum L.) cultivars. Fifteen days after seedling transplantation, 15 μM Cd stress alone and in combination with 0.6 mM Si was applied. Silicon application improved root and shoot dry matter of Cd-sensitive cultivar Sehar-2006 while the effect was non-significant in Cd-tolerant cultivar Iqbal-2000. Silicon-treated Cd-sensitive cultivar showed marked improvements in chlorophyll content and photosynthesis, while stomatal conductance and transpiration rate decreased by Si application. Silicon treatment enhanced the activities of enzymatic antioxidants including catalase, ascorbate peroxidase, guaiacol peroxidase and superoxide dismutase and the increase was higher for Cd-tolerant cultivar Iqbal-2000. Although Si nutrition depressed malondialdehyde (MDA) content in both Cd-stressed cultivars, the response was more evident in Cd-sensitive Sehar-2006. Lower lipid peroxidation was related to Si-induced increase in antioxidant activities only in Cd-sensitive cultivar. Silicon application decreased Cd accumulation in the roots and shoots of both the cultivars. The decrease in shoot Cd was associated with a decrease in Cd uptake by roots and Cd translocation from roots to shoots. Overall, it is concluded that Si suppressed Cd contents by decreasing transpiration rate in Cd-sensitive cultivar and by increasing antioxidant activity in Cd-tolerant cultivar.
显示更多 [+] 显示较少 [-]Differential responses of peach (Prunus persica) seedlings to elevated ozone are related with leaf mass per area, antioxidant enzymes activity rather than stomatal conductance
2017
Dai, Lulu | Li, Pin | Shang, Bo | Liu, Shuo | Yang, Aizhen | Wang, Younian | Feng, Zhaozhong
To evaluate the ozone (O3) sensitivity among peach tree (Prunus persica) cultivars widely planted in Beijing region and explore the possible eco-physiological response mechanisms, thirteen cultivars of peach seedlings were exposed to either charcoal-filtered air or elevated O3 (E-O3, non-filtered ambient air plus 60 ppb) for one growing season in open-top chambers. Leaf structure, stomatal structure, gas exchange and chlorophyll a fluorescence, photosynthetic pigments, antioxidant defense system and lipid peroxidation were measured in three replicated chambers. Results showed that E-O3 significantly reduced abaxial epidemis thickness, but no effects on the thicknesses of adaxial epidemis, palisade parenchyma and spongy parenchyma. Stomatal area, density and conductance were not significantly affected by E-O3. E-O3 significantly accelerated leaf senescence, as indicated by increased lipid peroxidation and more declines in light-saturated photosynthetic rate and pigments contents. The reduced ascorbate content (ASC) was decreased but antioxidant enzyme activity (CAT, APX and SOD) and total antioxidant capacity (TAC) were significantly increased by E-O3 among cultivars. The cultivars with visible symptoms also had more reductions in net photosynthetic rate than those without visible symptoms. Ozone sensitivity among cultivars was strongly linked to leaf mass per area (LMA), antioxidant enzymes activity e.g. SOD, APX rather than stomatal parameters (stomatal area, density and conductance) and ASC. Results could provide a theoretical basis for selecting and breeding the ozone-resistant cultivars of peach trees grown in high O3-polluted regions.
显示更多 [+] 显示较少 [-]