细化搜索
结果 1-10 的 142
New critical levels for ozone effects on young trees based on AOT 40 and simulated leaf uptake of ozone
2004
Karlsson, Pererik | Uddling, Johan | Braun, Sabine | Broadmeadow, Mark | Elvira, Susana | Gimeno, Benjamin | Le Thiec, Didier | Oksanen, Elina | Vandermeiren, Karine | Wilkinson, Matthew | Emberson, Lisa | Swedish Environmental Research Institute (IVL) | Department of Plant and Environmental Sciences ; Göteborgs Universitet = University of Gothenburg (GU) | Institute for Applied Plant Biology ; Partenaires INRAE | Forest Research [Great Britain] | Ecotoxicidad de la Contaminacion Atmosferica ; Partenaires INRAE | Ecologie et Ecophysiologie Forestières [devient SILVA en 2018] (EEF) ; Institut National de la Recherche Agronomique (INRA)-Université de Lorraine (UL) | University of Joensuu | Sciensano [Bruxelles] ; Pasteur Network (Réseau International des Instituts Pasteur) | Stockholm Environment Institute at York (SEI-YORK) ; University of York [York, UK]
International audience
显示更多 [+] 显示较少 [-]Rhizophagus irregularis enhances tolerance to cadmium stress by altering host plant hemp (Cannabis sativa L.) photosynthetic properties
2022
Sun, Simiao | Feng, Yuhan | Huang, Guodong | Zhao, Xu | Song, Fuqiang
Arbuscular mycorrhizal fungi (AMF) are widespread and specialized soil symbiotic fungi, and the establishment of their symbiotic system is of great importance for adversity adaptation. To reveal the growth and photosynthetic characteristics of AMF–crop symbionts in response to heavy metal stress, this experiment investigated the effects of Rhizophagus irregularis (Ri) inoculation on the growth, photosynthetic gas exchange parameters, and chlorophyll fluorescence characteristics of hemp (Cannabis sativa L.) at a Cd concentration of 80 mg/kg. The results showed that (1) under Cd stress, the biomass of each plant structure in the Ri treatment was significantly higher than that in the noninoculation treatment (P < 0.05); (2) under Cd stress, the transpiration rate, stomatal conductance, net photosynthetic rate, PSII efficiency, apparent electron transport rate and photochemical quenching coefficient of the Ri inoculation group reached a maximum, with increases ranging from 1% to 28%; (3) inoculation of Ri significantly reduced Cd enrichment in leaves, which in turn significantly increased the transpiration rate, stomatal conductance, electron transfer rate, net photosynthetic rate and photosynthetic intensity, protecting PSII (P < 0.05); and (4) by measuring the light response curves of different treatments, the light saturation points of hemp inoculated with the Ri treatment reached 1448.4 μmol/m²/s, and the optical compensation point reached 24.0 μmol/m²/s under Cd stress. The Ri–hemp symbiont demonstrated high adaptability to weak light and high utilization efficiency of strong light under Cd stress. Our study showed that Ri–hemp symbiosis improves adaptation to Cd stress and promotes plant growth by regulating the photosynthetic gas exchange parameters and chlorophyll fluorescence parameters of plants. The Ri–hemp symbiosis is a promising technology for improving the productivity of Cd-contaminated soil.
显示更多 [+] 显示较少 [-]Effects of biochar on uptake, acquisition and translocation of silver nanoparticles in rice (Oryza sativa L.) in relation to growth, photosynthetic traits and nutrients displacement
2019
Abbas, Qumber | Liu, Guijian | Yousaf, Balal | Ali, Muhammad Ubaid | Ullah, Habib | Ahmed, Rafay
Rapid development in nanotechnology and incorporation of silver nanoparticles (AgNPs) in wide range of consumer products causing the considerable release of these NPs in the environment, leading concerns for ecosystem safety and plant health. In this study, rice (Oryza sativa) was exposed to AgNPs (0, 100, 200, 500 and 1000 mg L−1) in biochar amended (2 %w/v) and un-amended systems. Exposure of plants to AgNPs alone reduced the root and shoot length, biomass production, chlorophyll contents, photosynthesis related physiological parameters as well as macro-and micronutrients in a dose dependent manner. However, in case of biochar amendment, physiological parameters i.e., net photosynthesis rate, maximum photosynthesis rate, CO2 assimilation, dark respiration and stomatal conductance reduced only 16, 6, 7, 3 and 8%, respectively under AgNPs exposure at 1000 mg L−1 dose. Meanwhile, biochar at all exposure level of AgNPs decreased the bioaccumulation of Ag in rice root and shoot tissues, thus alleviated the phyto-toxic effects of NPs on plant growth. Moreover, results showed that biochar reduced the bioavailability of AgNPs by surface complexation, suppressing dissolution and release of toxic Ag+ ions in the growth medium. The presence of biochar at least decreased 2-fold tissue contents of Ag even at highest AgNPs (1000 mg L−1) concentration. These finding suggested that biochar derived from waste biomass resources can be used effectively to prevent the bioaccumulation and subsequent trophic level transfer of emerging Ag nano-pollutant in the environment.
显示更多 [+] 显示较少 [-]Foliar mercury content from tropical trees and its correlation with physiological parameters in situ
2018
Teixeira, Daniel C. | Lacerda, Luiz D. | Silva-Filho, Emmanoel V.
The terrestrial biogeochemical cycle of mercury has been widely studied because, among other causes, it presents a global distribution and harmful biotic interactions. Forested ecosystems shows great concentrations from Hg and Litterfall is known as the major contributor to the fluxes at the soil/air interface, through the superficial adsorption on the leaves and by the gas exchange of the stomatal pores. The understanding of which processes control the stage of Hg cycle in these ecosystems is still not totally clear. The influences of physiological and morphological parameters were tested against the Hg concentrations in the leaves of 14 endemic species of an evergreen tropical forest in south-eastern Brazil, and an exotic species from Platanus genus. Pathways were studied through leaf areas and growing tree parameters, where maximum rate of net photosynthesis (Pnmax), transpiration rate (E), stomatal conductance (Gs) were examined. The results obtained in situ indicated a positive correlation between Pnmax and the Hg concentration; Cedrela fissilis and Croton floribundus were the most sensitive species to the accumulation of Hg and the most photosynthetically active in this study. The primary productivity from Tropical forest should be a proxy of Hg deposition from atmosphere to soil, retained there while forests stand up, representing an environmental service of sequestration of this global pollutant. Therefore, forests and trees with great photosynthetic potential should be considered in predictions, budgets and non-geological soil content regarding the global Hg cycle.
显示更多 [+] 显示较少 [-]Developing ozone critical levels for multi-species canopies of Mediterranean annual pastures
2017
Calvete-Sogo, H. | González Fernández, I. | García-Gómez, H. | Alonso, R. | Elvira, S. | Sanz, J. | Bermejo-Bermejo, V.
Ozone (O3) critical levels (CLe) are still poorly developed for herbaceous vegetation. They are currently based on single species responses which do not reflect the multi-species nature of semi-natural vegetation communities. Also, the potential effects of other factors like the nitrogen (N) input are not considered in their derivation, making their use uncertain under natural conditions.Exposure- and dose-response relationships were derived from two open-top chamber experiments exposing a mixture of 6 representative annual Mediterranean pasture species growing in natural soil to 4 O3 fumigation levels and 3 N inputs. The Deposition of O3 and Stomatal Exchange model (DO3SE) was modified to account for the multi-species nature of the canopy following a big-leaf approach. This new approach was used for estimating a multi-species phytotoxic O3 dose (PODy-MS). Response relationships were derived based on O3 exposure (AOT40) and flux (PODy-MS) indices.The treatment effects were similar in the two seasons: O3 reduced the aboveground biomass growth and N modulated this response. Gas exchange rates presented a high inter-specific variability and important inter-annual fluctuations as a result of varying growing conditions during the two years. The AOT40-based relationships were not statistically significant except when the highest N input was considered alone. In contrast, PODy-MS relationships were all significant but for the lowest N input level. The influence of the N input on the exposure- and dose-response relationships implies that N can modify the O3 CLe. However, this is an aspect that has not been considered so far in the methodologies for establishing O3 CLe. Averaging across N input levels, a multi-species O3 CLe (CLef-MS) is proposed POD1-MS = 7.9 mmol m⁻², accumulated over 1.5 month with a 95% confidence interval of (5.9, 9.8). Further efforts will be needed for comparing the CLef-MS with current O3 CLef based on single species responses.
显示更多 [+] 显示较少 [-]Evergreen or deciduous trees for capturing PAHs from ambient air? A case study
2016
De Nicola, Flavia | Concha Graña, Estefanía | López Mahía, Purificación | Muniategui Lorenzo, Soledad | Prada Rodríguez, Darío | Retuerto, Rubén | Carballeira, Alejo | Aboal, Jesús R. | Fernández, J Ángel
Tree canopies play a key role in the cycling of polycyclic aromatic hydrocarbons (PAHs) in terrestrial ecosystems, as leaves can capture PAHs from the air. In this study, accumulation of PAHs was compared in an evergreen species, P. pinaster, and in a deciduous species, Q. robur, in relation to some physio-morphological characteristics. For this purpose, pine needles and oak leaves collected from different sites across Galicia (NW Spain) were analysed to determine PAH contents, specific leaf area, stomatal density and conductance.Leaves and needles contained similar total amounts of PAHs. The major contribution of particle-bound PAHs in oak (the concentrations of 4- and 5-ring PAHs were two times higher, and those of 6-ring PAHs five times higher in oak than in pine) may be related to the higher specific leaf area (13 and 4 cm2 g−1 dry mass in respectively oak and pine). However, the major contribution of vapor-phase PAHs in pines may be affected by the stomatal conductance (two times higher in pine than in oak). Moreover, an increase in the diameter at breast height of trees led to an increase in accumulation of PAHs, with pine capturing higher amounts of low and medium molecular weight PAHs. The study findings underline the potential role of trees in improving air quality, taking into account the canopy biomass and life cycle.
显示更多 [+] 显示较少 [-]Chronic drought stress reduced but not protected Shantung maple (Acer truncatum Bunge) from adverse effects of ozone (O3) on growth and physiology in the suburb of Beijing, China
2015
Li, Li | Manning, William J. | Tong, Lei | Wang, Xiaoke
A two-year experiment exposing Acer truncatum Bunge seedlings to elevated ozone (O3) concentrations above ambient air (AO) and drought stress (DS) was carried out using open-top chambers (OTCs) in a suburb of Beijing in north China in 2012–2013. The results suggested that AO and DS had both significantly reduced leaf mass area (LMA), stomatal conductance (Gs), light saturated photosynthetic rate (Asat) as well as above and below ground biomass at the end of the experiment. It appeared that while drought stress mitigated the expression of foliar injury, LMA, leaf photosynthetic pigments, height growth and basal diameter, due to limited carbon fixation, the O3 – induced reductions in Asat, Gs and total biomass were enhanced 23.7%. 15.5% and 8.1% respectively. These data suggest that when the whole plant was considered that drought under the conditions of this experiment did not protect the Shantung maple seedlings from the effects of O3.
显示更多 [+] 显示较少 [-]Screening agrochemicals as potential protectants of plants against ozone phytotoxicity
2015
Saitanis, Costas J. | Lekkas, Dimitrios V. | Agathokleous, Evgenios | Flouri, Fotini
We tested seven contemporary agrochemicals as potential plant protectants against ozone phytotoxicity. In nine experiments, Bel-W3 tobacco plants were experienced weekly exposures to a) 80 nmol mol−1 of ozone-enriched or ozone-free air in controlled environment chambers, b) an urban air polluted area, and c) an agricultural-remote area. Ozone caused severe leaf injury, reduced chlorophylls' and total carotenoids' content, and negatively affected photosynthesis and stomatal conductance. Penconazole, (35% ± 8) hexaconazole (28% ± 5) and kresoxim-methyl (28% ± 15) showed higher plants’ protection (expressed as percentage; mean ± s.e.) against ozone, although the latter exhibited a high variability. Azoxystrobin (21% ± 15) showed lower protection efficacy and Benomyl (15% ± 9) even lower. Trifloxystrobin (7% ± 11) did not protect the plants at all. Acibenzolar-S-methyl + metalaxyl-M (Bion MX) (−6% ± 17) exhibited the higher variability and contrasting results: in some experiments it showed some protection while in others it intensified the ozone injury by causing phytotoxic symptoms on leaves, even in control plants.
显示更多 [+] 显示较少 [-]Ozone induces stomatal narrowing in European and Siebold's beeches: A comparison between two experiments of free-air ozone exposure
2015
Hoshika, Yasutomo | Watanabe, Makoto | Kitao, Mitsutoshi | Häberle, Karl-Heinz | Grams, Thorsten E.E. | Koike, Takayoshi | Matyssek, Rainer
Stomata tend to narrow under ozone (O3) impact, leading to limitation of stomatal O3 influx. Here, we review stomatal response under recently conducted free-air O3 exposure experiments on two species of the same tree genus: Fagus sylvatica at Kranzberg Forest (Germany) and F. crenata at Sapporo Experimental Forest (Japan). Both beeches exhibited reduction in stomatal conductance (gs) by 10–20% under experimentally enhanced O3 regimes throughout the summer relative to ambient-air controls. Stomatal narrowing occurred, in early summer, in the absence of reduced carboxylation capacity of Rubisco, although photosynthetic net CO2 uptake rate temporarily reflected restriction to some minor extent. Observed stomatal narrowing was, however, diminished in autumn, suggesting gradual loss of stomatal regulation by O3. Monotonic decline in gs with cumulative O3 exposure or flux in current modeling concepts appear to be unrealistic in beech.
显示更多 [+] 显示较少 [-]Modeling of stomatal conductance to estimate stomatal ozone uptake by Fagus crenata, Quercus serrata, Quercus mongolica var. crispula and Betula platyphylla
2014
Kinose, Yoshiyuki | Azuchi, Fumika | Uehara, Yui | Kanomata, Tomoaki | Kobayashi, Ayumi | Yamaguchi, Masahiro | Izuta, Takeshi
To construct stomatal conductance models and estimate stomatal O3 uptake for Fagus crenata, Quercus serrata, Quercus mongolica var. crispula and Betula platyphylla, stomatal conductance (gs) was measured in seedlings of the four tree species. Better estimates of gs were made by incorporating the acute effects of O3 on gs into the models and the models could explain 34–52% of the variability in gs. Although the O3 concentration was relatively high in spring from April to May, COU of F. crenata, Q. serrata and Q. mongolica var. crispula were relatively low and the ratios of COU in spring to total COU in one year were 16.8% in all tree species because of low gs limited mainly by leaf pre-maturation and/or low temperature. The COU of B. platyphylla were relatively high mainly because of rapid leaf maturation and lower optimal temperature for stomatal opening.
显示更多 [+] 显示较少 [-]