细化搜索
结果 1-10 的 29
Manipulation of fish community structure effectively restores submerged aquatic vegetation in a shallow subtropical lake
2022
Guo, Chao | Li, Wei | Li, Shiqi | Mai, Zhan | Zhang, Tanglin | Liu, Jiashou | Hansen, Adam G. | Li, Lin | Cai, Xingwei | Hicks, Brendan J.
Fish community manipulation and regulation has been largely overlooked as a mitigation strategy for restoring submerged aquatic vegetation (SAV) in shallow lakes of the middle and lower Yangtze River Basin (MLYRB). An in-situ fish exclusion experiment and a large-scale lake manipulation were conducted to test the hypothesis that the reasonable removal of benthivorous and herbivorous fish would facilitate the restoration and reconstruction of SAV in shallow lakes within the MLYRB. The in-situ exclusion experiment was conducted from April to October in 2017. Electrofishing was used to remove benthivorous and herbivorous fish from the exclosures. SAV were then artificially planted in the same pattern and density in both exclosures and adjacent open sites, and responses were measured for seven consecutive months. The mean percent coverage and biomass of SAV in the exclosures increased quickly and remained significantly higher than those in open sites over the duration of the experiment. Water quality also improved as turbidity, chlorophyll-a, total phosphorus and total nitrogen in the exclosures remained significantly lower than those in the open sites. After the in-situ experiment, a larger scale manipulation of fish in the entire submerged macrophyte zone (SMZ) was implemented from 2017 to 2020. After removing more than 2/3 of the benthivorous and herbivorous fish biomass by October 2020 in the SMZ, both the species richness and spatial coverage of SAV increased from 2 to 9 and from 1.7% to 32.2%, respectively. Our results provided clear evidence that fish are strong regulators of SAV productivity and that their reasonable removal facilitates ecological recovery. Therefore, we propose that fish community manipulation as implemented in this study be given more attention in addition to the reduction of external nutrient loading when designing projects to restore SAV in shallow lakes of the MLYRB.
显示更多 [+] 显示较少 [-]Sequestration of microfibers and other microplastics by green algae, Cladophora, in the US Great Lakes
2021
Peller, Julie | Nevers, Meredith B. | Byappanahalli, Muruleedhara | Nelson, Cassie | Ganesh Babu, Bharath | Evans, Mary Anne | Kostelnik, Eddie | Keller, Morgan | Johnston, Jenna | Shidler, Sarah
Daunting amounts of microplastics are present in surface waters worldwide. A main category of microplastics is synthetic microfibers, which originate from textiles. These microplastics are generated and released in laundering and are discharged by wastewater treatment plants or enter surface waters from other sources. The polymers that constitute many common synthetic microfibers are mostly denser than water, and eventually settle out in aquatic environments. The interaction of these microfibers with submerged aquatic vegetation has not been thoroughly investigated but is potentially an important aquatic sink in surface waters. In the Laurentian Great Lakes, prolific growth of macrophytic Cladophora creates submerged biomass with a large amount of surface area and the potential to collect and concentrate microplastics. To determine the number of synthetic microfibers in Great Lakes Cladophora, samples were collected from Lakes Erie and Michigan at multiple depths in the spring and summer of 2018. After rinsing and processing the algae, associated synthetic microfibers were quantified. The average loads of synthetic microfibers determined from the Lake Erie and Lake Michigan samples were 32,000 per kg (dry weight (dw)) and 34,000 per kg (dw), respectively, 2–4 orders of magnitude greater than loads previously reported in water and sediment. To further explore this sequestration of microplastics, fresh and aged Cladophora were mixed with aqueous mixtures of microfibers or microplastic in the laboratory to simulate pollution events. Microscopic analyses indicated that fresh Cladophora algae readily interacted with microplastics via adsorptive forces and physical entanglement. These interactions mostly cease upon algal senescence, with an expected release of microplastics in benthic sediments. Collectively, these findings suggest that synthetic microfibers are widespread in Cladophora algae and the affinity between microplastics and Cladophora may offer insights for removing microplastic pollution.Macroalgae in the Laurentian Great Lakes contain high loads of synthetic microfibers, both entangled and adsorbed, which likely account for an important fraction of microplastics in these surface waters.
显示更多 [+] 显示较少 [-]Rare-earth element yttrium enhances the tolerance of curly-leaf pondweed (Potamogeton crispus) to acute nickel toxicity
2019
Lyu, Kai | Wang, Xuan | Wang, Lei | Wang, Guoxiang
Nickel is a ubiquitous heavy-metal pollutant in lakes and severely affects aquatic organisms. Aquatic plants are often initially linked to having heavy metal contents and further are proposed as phytoremediation agent to remove heavy metal from water. Although the toxic effects of nickel on aquatic plants are thoroughly explored, the effective investigation to increase Ni tolerance is still in its infancy. The role of rare-earth elements (REEs) in plant resisting heavy-metal pollution has recently received considerable interest. To explore the physiological effects of REEs on Potamogeton crispus under Ni stress, we explored whether or not the additive exposure to low-dose yttrium (Y; 2.5 μM) promotes the polyamine metabolism, antioxidation, and photosynthesis performance of P. crispus under Ni stress values of 0, 50, 100, 150, and 200 μM. Results showed that Y exposure did not influence Ni bioaccumulation in P. crispus. Furthermore, Y exposure alleviated the adverse effects of Ni stress to convergent degrees because Y positively converts putrescine into spermidine and spermine, inhibits oxidative stress, increases the total chlorophyll content, and maximum/potential quantum efficiency of photosystem II. We concluded that low-dose Y can positively regulate polyamine transformation, inhibit oxidative stress, stimulate photosynthesis, and finally promote the resist ability of P. crispus to nickel stress. Thus, REEs have potential to be applied in regulating submerged plant tolerance to aquatic heavy-metal pollution.
显示更多 [+] 显示较少 [-]Phytotoxicity of atrazine, isoproturon, and diuron to submersed macrophytes in outdoor mesocosms
2010
Knauert, Stefanie | Singer, Heinz | Hollender, Juliane | Knauer, Katja
The submersed macrophytes Elodea canadensis, Myriophyllum spicatum and Potamogeton lucens were constantly exposed over a five-week period to environmentally relevant concentrations of atrazine, isoproturon, diuron, and their mixture in outdoor mesocosms. Effects were evaluated investigating photosynthetic efficiency (PE) of the three macrophytes and growth of M. spicatum and E. canadensis. Adverse effects on PE were observed on days 2 and 5 after application. M. spicatum was found to be the more sensitive macrophyte. E. canadensis and P. lucens were less sensitive to atrazine, diuron and the mixture and insensitive to isoproturon. PE of M. spicatum was similarly affected by the single herbicides and the mixture demonstrating concentration addition. Growth of E. canadensis and M. spicatum was not reduced indicating that herbicide exposure did not impair plant development. Although PE measurements turned out to be a sensitive method to monitor PSII herbicides, plant growth remains the more relevant ecological endpoint in risk assessment. Short-term effects on photosynthesis did not result in growth reduction of submerse macrophytes exposed to PSII inhibitors.
显示更多 [+] 显示较少 [-]Multiple mitigation mechanisms: Effects of submerged plants on the toxicity of nine insecticides to aquatic animals
2017
Brogan, William R. | Relyea, Rick A.
Understanding the processes that regulate contaminant impacts in nature is an increasingly important challenge. For insecticides in surface waters, the ability of aquatic plants to sorb, or bind, hydrophobic compounds has been identified as a primary mechanism by which toxicity can be mitigated (i.e. the sorption-based model). However, recent research shows that submerged plants can also rapidly mitigate the toxicity of the less hydrophobic insecticide malathion via alkaline hydrolysis (i.e. the hydrolysis-based model) driven by increased water pH resulting from photosynthesis. However, it is still unknown how generalizable these mitigation mechanisms are across the wide variety of insecticides applied today, and whether any general rules can be ascertained about which types of chemicals may be mitigated by each mechanism. We quantified the degree to which the submerged plant Elodea canadensis mitigated acute (48-h) toxicity to Daphnia magna using nine commonly applied insecticides spanning three chemical classes (carbamates: aldicarb, carbaryl, carbofuran; organophosphates: malathion, diazinon, chlorpyrifos; pyrethroids: permethrin, bifenthrin, lambda-cyhalothrin). We found that insecticides possessing either high octanol-water partition coefficients (log Kow) values (i.e. pyrethroids) or high susceptibility to alkaline hydrolysis (i.e. carbamates and malathion) were all mitigated to some degree by E. canadensis, while the plant had no effect on insecticides possessing intermediate log Kow values and low susceptibility to hydrolysis (i.e. chlorpyrifos and diazinon). Our results provide the first general insights into which types of insecticides are likely to be mitigated by different mechanisms based on known chemical properties. We suggest that current models and mitigation strategies would be improved by the consideration of both mitigation models.
显示更多 [+] 显示较少 [-]Effects of temperature and salinity on Ruppia sinensis seed germination, seedling establishment, and seedling growth
2018
Gu, Ruiting | Zhou, Yi | Song, Xiaoyue | Xu, Shaochun | Zhang, Xiaomei | Lin, Haiying | Xu, Shuai | Zhu, Shuyu
As typical submerged aquatic vegetation, Ruppia species are facing population reductions due to anthropogenic impacts. In this study, we investigated the effects of temperature and salinity on seed germination and seedling establishment of Ruppia sinensis seeds collected from northern China. The effects of seven salinities (0–50) and six water temperatures (0–30°C) on seed germination were investigated to identify the environmental conditions that could potentially limit survival and growth. We found that: 1) optimum seed germination was salinity 5 at 30°C; 2) high salinity (salinity 40–50) and low temperature (0°C) significantly inhibited seed germination; 3) seed germination with increasing temperature showed a bimodal pattern at suitable salinities (5–10); 4) storing seeds at high salinities (40–50) or low temperature (0°C) promoted germination after transferal to optimal germination conditions. These findings may serve as useful information for R. sinensis habitat establishment and restoration programs.
显示更多 [+] 显示较少 [-]The eutrophication commandments
2012
Fulweiler, R.W. | Rabalais, N.N. | Heiskanen, A.S.
Typically, rising atmospheric carbon dioxide concentrations are used to illustrate how humans have impacted the earth. However, we have also dramatically altered the amount of nitrogen (N) and phosphorus (P) cycling through the biosphere. Eventually these nutrients are carried to coastal receiving waters where they cause severe, often negative consequences including increased phytoplankton and macroalgae blooms, loss of submerged aquatic vegetation, low oxygen events, and decreased biodiversity. In many systems mitigation efforts are now underway to return these ecosystems to a less impacted state. While many uncertainties about the best way to manage eutrophic systems remain it is clear that we must take action to lessen our human nutrient footprint. Based on our current understanding of eutrophic systems we present ten eutrophication commandments or guidelines as a tool for scientists, policy makers, managers, and the public.
显示更多 [+] 显示较少 [-]Phytoremediation of synthetic textile dyes: biosorption and enzymatic degradation involved in efficient dye decolorization by Eichhornia crassipes (Mart.) Solms and Pistia stratiotes L
2021
Ekanayake, Manavi Sulakkana | Udayanga, Dhanushka | Wijesekara, Isuru | Manage, Pathmalal
The effectiveness of four aquatic floating plants: Eichhornia crassipes, Pistia stratiotes, Lemna minor, Salvinia sp., and a submerged plant Hydrilla sp. on decolorization and detoxification of five structurally different textile dyes: CI Direct Blue 201 (DB 201), Cibacron Blue FR, Cibanone Gold Yellow RK, Vat Green FFB, and Moxilon Blue GRL were studied. The E. crassipes and P. stratiotes showed complete decolorization of all the dyes tested, while Salvinia sp. (79–86%), L. minor (16–24%), and Hydrilla sp. (6–13%) were recorded as the least tolerance for all the dyes even after 14 days of incubation. Therefore, E. crassipes and P. stratiotes were selected for further studies using DB 201 as the model dye. E. crassipes and P. stratiotes showed complete decolorization of DB 201 at 48 and 84 h of incubation, respectively, and decolorization was well effective in the pH range 6–9. The crude extract of intracellular enzymes obtained from the roots of E. crassipes (46%) and P. stratiotes (20%) showed significant involvement on decolorization of DB 201, compared with the activity of crude extracellular extract and isolated endophytic bacteria and fungi (p ≤ 0.05). Further, 18 and 22% of biosorption of DB 201 dye were recorded by E. crassipes and P. stratiotes, respectively, suggesting that decolorization mechanisms of DB 201 dye by E. crassipes and P. stratiotes were based on biosorption and intracellular enzyme activities. The FTIR spectra and seed germination assay confirmed biodegradation and detoxification of DB 201 dye by E. crassipes and P. stratiotes plants along with complete color removal. Thus, present study confers the potential applicability of E. crassipes and P. stratiotes plants for textile dye removal and release to the environment without further treatment.
显示更多 [+] 显示较少 [-]An In Situ Experimental Study of Effects on Submerged Vegetation After Activated Carbon Amendment of Legacy Contaminated Sediments
2018
Olsen, Marianne | Moy, Frithjof E. | Mjelde, Marit | Lydersen, Espen
Activated carbon (AC) amendment has been shown to reduce bioavailability of hydrophobic contaminants in the bioactive layer of sediment. Unwanted secondary effects of AC amendment could be particularly undesirable for ecologically important seagrass meadows, but so far, only a few studies have been conducted on effects on submerged plants. The purpose of this study was to investigate effects on growth and cover of submerged macrophytes in situ after AC amendment. Test sites were established within a seagrass meadow in the severely contaminated Norwegian fjord Gunneklevfjorden. Here we show that AC amendment does not influence neither cover nor length of plants. Our study might indicate a positive effect on growth from AC in powdered form. Hence, our findings are in support of AC amendment as a low-impact sediment remediation technique within seagrass meadows. However, we recommend further studies in situ on the effects of AC on submerged vegetation and biota. Factors influencing seasonal and annual variation in plant species composition, growth and cover should be taken into consideration. Graphical Abstract The effects of activated carbon amendment to growth and cover of submerged macrophytes were tested in an in situ experiment
显示更多 [+] 显示较少 [-]Interactions between Essential Nutrients with Platinum Group Metals in Submerged Aquatic and Emergent Plants
2007
Diehl, Deborah B. | Gagnon, Zofia E.
Increasing environmental concentrations of platinum group metals (PGMs), in particular platinum (Pt), rhodium (Rh) and palladium (Pd), from catalytic converters has been reported worldwide. The impact of these three metals on the uptake and use of essential mineral nutrients was examined using two plant models: the submerged aquatic plant, Elodea canadensis, and the terrestrial emergent plant, Peltandra virginica. Plants were grown for 2 weeks in nutrient solutions with either Pt⁴⁺ at concentrations between 0.05 and 5 mg/L, or a 0.1 mg/L Pt⁴⁺, Rh³⁺, Pd²⁺ mixture. Some treatments received additional Ca²⁺, Zn²⁺, or humic acid (with varying pH) to study how these conditions affected PGM uptake. Metal concentration analyses were conducted using a graphite furnace atomic absorption spectrometer (GFAAS) or an inductively coupled plasma emission spectrometer (ICP). Growth response was assessed through total chlorophyll content. There was significant Pt accumulation in plant tissues, from 55 to 326 times the concentration in nutrient solution. At pH 8, the addition of humic acid doubled Pt accumulation in comparison to the control. Additional exogenous minerals did not significantly affect PGM uptake, nor did the uptake of PGMs interfere with the uptake of Ca, Fe or Cu. Synthesis of chlorophyll in new shoots was not affected by Pt accumulation; however, visible chlorosis was observed in older shoots at 5 ppm Pt. Roadside Daucus carota samples from four heavy traffic locations in Dutchess County (New York) were also assessed for PGM content. Pt, Pd and Rh concentrations averaged 14.6, 10.2, and 0.7 μg/g, respectively.
显示更多 [+] 显示较少 [-]