细化搜索
结果 1-10 的 50
Phosphorus fractionation related to environmental risks resulting from intensive vegetable cropping and fertilization in a subtropical region
2021
Zhang, Wei | Zhang, Yuwen | An, Yuli | Chen, Xinping
Overuse of phosphorus (P) fertilizer and the resulting soil P accumulation in vegetable production increases the risk of P runoff and leaching. However, P transformations under continuous fertilization and their effects on environmental risk are unclear. The current study examined the effects of long-term P fertilizer application on P fractions in different soil layers, and assessed the correlations between P fractions and environmental risks in intensive vegetable production in a subtropical region. A total of 32 fields were studied, including 8 uncultivated fields and 24 fields continuously used for vegetable production for 1–3, 4–9, or 10–15 years. The results showed that excessive P fertilizer input caused soil P surpluses ranging from 204.6 to 252.4 kg ha⁻¹ yr⁻¹. Compared to uncultivated fields, vegetable fields contained higher levels of labile P, moderately labile P, sparingly labile P, and non-labile P. The combined percentage of labile P and moderately labile P increased from 55.2% in fields cultivated for 0–3 year to 65.5% in fields cultivated for 10–15 years. The concentrations of soil P fractions were higher at 0–20 cm soil depth than at 20–40 and 40–60 cm soil depth. Soil available P was positively correlated with all soil P fractions except diluted HCl-Pᵢ or concentrated HCl-Pₒ. Long-term vegetable production increased CaCl₂–P downward movement, which was positively correlated with levels of labile and moderately labile P. The P index indicated a high risk of P losses from the vegetable fields. The P index was on average 3.27-fold higher in the vegetable fields than in uncultivated fields, and was significantly correlated with soil available P and organic and inorganic P fertilizer input. The environmental risk caused by P in vegetable production should be reduced by reducing P fertilizer input so as to maintain soil available P within an optimal range for vegetable production.
显示更多 [+] 显示较少 [-]Seasonal factors driving biochemical biomarkers in two fish species from a subtropical reservoir in southern Brazil: An integrated approach
2020
Blank do Amaral, Aline Monique | Kuhn de Moura, Letícia | de Pellegrin, Dionatan | Guerra, Luciana Joner | Cerezer, Felipe Osmari | Saibt, Nathália | Prestes, Osmar Damian | Zanella, Renato | Loro, Vania Lucia | Clasen, Barbara
Reservoirs are lentic man-made waterbodies resulting from river damming processes. Pollutants coming from adjacent areas can accumulate in the water and sediment of these modified freshwater environments. Fish are often found in reservoirs occupying several trophic niches. Biochemical biomarkers are early warning signals of environmental disturbance to an organism. It is essential to understand how pollutants, abiotic variables and biochemical biomarker responses behave throughout the seasons to implement biomonitoring programs. Loricariichthys anus and Geophagus brasiliensis were collected, and abiotic variables were seasonally measured for one year, at six sampling sites in Passo Real reservoir, in a subtropical region of Southern Brazil. Biochemical biomarkers were analyzed in four tissues of both fish species, as well as metal and pesticide concentrations in the reservoir’s water and sediment. Redundancy analysis (RDA) was carried out to find the temporal relationship between biomarkers and environmental variables. RDA has clearly shown the separation of seasons for both species. Azoxystrobin, simazine and propoxur were the pesticides mostly contributing to the variation, whereas metals had lesser contribution to it. Seasonality appears to be the main factor explaining biomarkers’ variability. PERMANOVA has confirmed the effect of temperature and dissolved oxygen on biomarkers of both fish species. Thus, it is hard to differentiate if the fluctuation in biomarkers’ responses only reflects the normal state of organisms or it is a biological consequence from negative effects of fish exposure to several types of pollution (sewage, pesticides, and fertilizers) entering this aquatic system. In this study, to circumvent the seasonality issue on biomonitoring, the analysis of biomarkers on these fish should not be carried out in organs directly affected by temperature (such as liver and gills), or during reproduction periods (mainly in Spring).
显示更多 [+] 显示较少 [-]Determination of dry deposition velocity of polycyclic aromatic hydrocarbons under the sub-tropical climate and its implication for regional cycling
2020
Dotel, Jagdish | Gong, Ping | Wang, Xiaoping | Pokhrel, Balram | Wang, Chuanfei | Nawab, Javed
Atmospheric dry deposition is a major pathway for removal of polycyclic aromatic hydrocarbons (PAHs) from the atmosphere. Despite its significance in the atmospheric environment, measurements of the dry deposition velocity (VDD) and deposition fluxes (FDD) of PAHs are relatively limited. In this study, a passive dry deposition (PAS-DD) collector was co-deployed with passive air sampler polyurethane foam (PAS-PUF) from November 2015 to November 2016 in two major cities (Kathmandu and Pokhara), Nepal, to investigate the VDD and FDD of PAHs. The VDD of PAHs ranged from 0.25 to 0.5 cm s⁻¹ and the annual average was recorded as 0.37 ± 0.08 cm s⁻¹. On the basis of measured VDD, the FDD of ∑15PAHs in Kathmandu and Pokhara were estimated as 66 and 5 kg yr⁻¹ respectively. According to the measured VDD of Kathmandu and Pokhara in this study, and the previously published VDD data of Toronto, Canada, where the same PAS-DD collector was used, a significant multi-linear correlation (r² = 0.79, p < 0.05) was found between VDD of higher molecular weight (HMW with MW ≥ 228.3 and ≥ 4 rings) PAHs and meteorological parameters (precipitation and wind speed) and vapor pressure of PAHs. To the best of our knowledge, this enabled the development of an empirical model that can exhibit the combined effects of meteorological conditions on the VDD of HMW PAHs. The model was used to estimate the VDD values for major cities in the Indo-Gangetic Plain (IGP) region and the maximum estimated proportion of HMW PAHs deposited by dry deposition reached up to 60% of total emissions. Although PAH emissions in the IGP region pose global risks, the results of this study highlight the considerable risk for local IGP residents, due to the large dry deposition proportion of HMW PAHs.
显示更多 [+] 显示较少 [-]A stomatal ozone flux–response relationship to assess ozone-induced yield loss of winter wheat in subtropical China
2012
Feng, Zhaozhong | Tang, Haoye | Uddling, Johan | Pleijel, Håkan | Kobayashi, Kazuhiko | Zhu, Jianguo | Oue, Hiroki | Guo, Wenshan
Stomatal ozone flux and flux–response relationships were derived for winter wheat (Triticum aestivum L.) grown under fully open-air ozone fumigation. A stomatal conductance (gₛₜₒ) model developed for wheat in Europe was re-parameterized. Compared to European model parameterizations, the main changes were that the VPD and radiation response functions were made less and more restrictive, respectively, and that the temperature function was omitted. The re-parameterized gₛₜₒ model performed well with an r² value of 0.76. The slope and intercept of the regression between observed and predicted gₛₜₒ were not significantly different from 1 to 0, respectively. An ozone uptake threshold of 12 nmol m⁻² s⁻¹ was judged most reasonable for the wheat flux–response relationship in subtropical China. Judging from both flux- and concentration-based relationships, the cultivars investigated seem to be more sensitive to ozone than European cultivars. The new flux–response relationship can be applied to ozone risk assessment in subtropical regions.
显示更多 [+] 显示较少 [-]Paddy-upland rotation with Chinese milk vetch incorporation reduced the global warming potential and greenhouse gas emissions intensity of double rice cropping system
2021
Zhong, Chuan | Liu, Ying | Xu, Xintong | Yang, Binjuan | Aamer, Muhammad | Zhang, Peng | Huang, Guoqin
It is a common practice to maintain soil fertility based on the paddy-upland rotation with green manure in the subtropical region of China. However, rare studies are known about greenhouse gas (GHG) emissions from the paddy-upland rotation with green manure incorporation. Therefore, we conducted a field experiment of two years to compared with the effect of two kinds of green manure (CV: Chinese milk vetch and OR: Oilseed rape), and two kinds of cropping system (DR: double rice system and PR: paddy-upland rotation) on greenhouse gases emissions. We have found that the annual accumulation of CH₄ of Chinese milk vetch-rice-sweet potato || soybean was significantly reduced by 32.95%∼63.22% compared with other treatments, mainly because Chinese milk vetch reduced the abundance of methanogens by reducing soil C/N ratio. Meanwhile increasing soil permeability resulting from paddy-upland rotation also reduced soil CH₄ emission. However, The annual accumulation of N₂O of Chinese milk vetch-rice-sweet potato || soybean was increased by 17.39%∼870.11% compared with other treatments, mainly attributed to paddy-upland rotation decreased soil pH and nosZ abundance and increased nirK and nirS, thus enhancing N₂O emission, meanwhile the Chinese milk vetch incorporation and its interaction with the paddy-upland rotation has greatly enhanced the contents of NO₃⁻-N and abundance of ammonia-oxidizing archaea (AOA). The area-scaled global warming potential (GWP) and the biomass-scaled greenhouse gas emissions intensity (GHGI) of Chinese milk vetch-rice-sweet potato || soybean was reduced by 19.01%∼50.69% and 5.38%∼35.77% respectively. Thereby, the Chinese milk vetch-rice-sweet potato || soybean cropping system was suitable for agricultural sustainable development.
显示更多 [+] 显示较少 [-]From Antarctica to the subtropics: Contrasted geographical concentrations of selenium, mercury, and persistent organic pollutants in skua chicks (Catharacta spp.)
2017
Carravieri, Alice | Cherel, Yves | Brault-Favrou, Maud | Churlaud, Carine | Peluhet, Laurent | Labadie, Pierre | Budzinski, Hélène | Chastel, Olivier | Bustamante, Paco
Seabirds integrate bioaccumulative contaminants via food intake and have revealed geographical trends of contamination in a variety of ecosystems. Pre-fledging seabird chicks are particularly interesting as bioindicators of chemical contamination, because concentrations in their tissues reflect primarily dietary sources from the local environment. Here we measured 14 trace elements and 18 persistent organic pollutants (POPs) in blood of chicks of skuas that breed in four sites encompassing a large latitudinal range within the southern Indian Ocean, from Antarctica (Adélie Land, south polar skua Catharacta maccormicki), through subantarctic areas (Crozet and Kerguelen Islands, brown skua C. lonnbergi), to the subtropics (Amsterdam Island, C. lonnbergi). Stables isotopes of carbon (δ13C, feeding habitat) and nitrogen (δ15N, trophic position) were also measured to control for the influence of feeding habits on contaminant burdens. Concentrations of mercury (Hg) and selenium (Se) were very high at all the four sites, with Amsterdam birds having the highest concentrations ever reported in chicks worldwide (4.0 ± 0.8 and 646 ± 123 μg g−1 dry weight, respectively). Blood Hg concentrations showed a clear latitudinal pattern, increasing from chicks in Antarctica to chicks in the subantarctic and subtropical islands. Interestingly, blood Se concentrations showed similar between-population differences to Hg, suggesting its involvement in protective mechanisms against Hg toxicity. Chicks’ POPs pattern was largely dominated by organochlorine pesticides, in particular DDT metabolites and hexachlorobenzene (HCB). Skua chicks from subantarctic islands presented high concentrations and diversity of POPs. By contrast, chicks from the Antarctic site overall had the lowest concentrations and diversity of both metallic and organic contaminants, with the exception of HCB and arsenic. Skua populations from these sites, being naturally exposed to different quantities of contaminants, are potentially good models for testing toxic effects in developing chicks in the wild.
显示更多 [+] 显示较少 [-]Soil carbon inventory to quantify the impact of land use change to mitigate greenhouse gas emissions and ecosystem services
2018
Potma Gonçalves, Daniel Ruiz | Carlos de Moraes Sá, João | Mishra, Umakant | Ferreira Furlan, Flávia Juliana | Ferreira, Lucimara Aparecida | Inagaki, Thiago Massao | Romaniw, Jucimare | de Oliveira Ferreira, Ademir | Briedis, Clever
Currently the land use and land use change (LULUC) emits 1.3 ± 0.5 Pg carbon (C) year⁻¹, equivalent to 8% of the global annual emissions. The objectives of this study were to quantify (1) the impact of LULUC on greenhouse gas (GHG) emissions in a subtropical region and (2) the role of conservation agriculture to mitigate GHG emissions promoting ecosystem services. We developed a detailed IPCC Tier 2 GHG inventory for the Campos Gerais region of southern Brazil that has large cropland area under long-term conservation agriculture with high crop yields. The inventory accounted for historical and current emissions from fossil fuel combustion, LULUC and other minor sources. We used Century model to simulate the adoption of conservation best management practices, to all croplands in the region from 2017 to 2117. Our results showed historical (1930–2017) GHG emissions of 412 Tg C, in which LULUC contributes 91% (376 ± 130 Tg C), the uncertainties ranged between 13 and 36%. Between 1930 and 1985 LULUC was a major source of GHG emission, however from 1985 to 2015 fossil fuel combustion became the primary source of GHG emission. Forestry sequestered 52 ± 24 Tg C in 0.6 Mha in a period of 47 years (1.8 Tg C Mha⁻¹ year⁻¹) and no-till sequestered 30.4 ± 24 Tg C in 2 Mha in a period of 32 years (0.5 Tg C Mha⁻¹ year⁻¹) being the principal GHG mitigating activities in the study area. The model predictions showed that best management practices have the potential to mitigate 13 years of regional emissions (330 Tg C in 100 years) or 105 years of agriculture, forestry and livestock emissions (40 Tg C in 100 years) making the agriculture sector a net carbon (C) sink and promoting ecosystem services.
显示更多 [+] 显示较少 [-]Incorporating long-term satellite-based aerosol optical depth, localized land use data, and meteorological variables to estimate ground-level PM2.5 concentrations in Taiwan from 2005 to 2015
2018
Jung, Chau-Ren | Hwang, Bing-Fang | Chen, Wei-Ting
Satellite-based aerosol optical depth (AOD) is now comprehensively applied to estimate ground-level concentrations of fine particulate matter (PM2.5). This study aimed to construct the AOD-PM2.5 estimation models over Taiwan. The AOD-PM2.5 modeling in Taiwan island is challenging owing to heterogeneous land use, complex topography, and humid tropical to subtropical climate conditions with frequent cloud cover and prolonged rainy season. The AOD retrievals from the MODerate resolution Imaging Spectroradiometer (MODIS) onboard the Terra and Aqua satellites were combined with the meteorological variables from reanalysis data and high resolution localized land use variables to estimate PM2.5 over Taiwan island from 2005 to 2015. Ten-fold cross validation was carried out and the residuals of the estimation model at various locations and seasons are assessed. The cross validation (CV) R2 based on monitoring stations were 0.66 and 0.66, with CV root mean square errors of 14.0 μg/m3 (34%) and 12.9 μg/m3 (33%), respectively, for models based on Terra and Aqua AOD. The results provided PM2.5 estimations at locations without surface stations. The estimation revealed PM2.5 concentration hotspots in the central and southern part of the western plain areas, particularly in winter and spring. The annual average of estimated PM2.5 concentrations over Taiwan consistently declined during 2005–2015. The AOD-PM2.5 model is a reliable and validated method for estimating PM2.5 concentrations at locations without monitoring stations in Taiwan, which is crucial for epidemiological study and for the assessment of air quality control policy.
显示更多 [+] 显示较少 [-]Cadmium accumulation in edible flowering cabbages in the Pearl River Delta, China: Critical soil factors and enrichment models
2018
Liu, Chengshuai | Chang, Chunying | Fei, Yingheng | Li, Fangbai | Wang, Qi | Zhai, Guangshu | Lei, Jing
Although many previous studies have reported the soil pH and organic matter to be the most critical factors that affect the transfer of Cd in soil-crop systems in temperate zones, the behavior of Cd transfer is different in the Pearl River Delta (PRD), which is located in a subtropical zone with different climate and soil conditions. Therefore, we must determine the critical environmental factors that influence the transfer of Cd in the soil-vegetable system in the PRD region. Such knowledge can improve the safety of vegetables. In this study, the soil geochemical properties are investigated to explore the key soil factors that control the uptake of Cd by flowering cabbage, a popular leaf vegetable in China, from soils in the PRD region. The Cd contents in vegetables were most positively correlated to soil oxalate-Cd (p < 0.01), which indicates that amorphous Cd is the most available form for uptake into the cabbages. With the characteristics of rich in Fe oxide and Al oxide in the PRD soils, soil Fe and Al oxides were found to be the most relevant to the transfer factors of Cd from the soils to the cabbages. Soil secondary minerals are the key factor that affects the transfer of Cd, thereby influencing the migration and fate of Cd in soil-cabbage systems, with DCB-Fe significantly decreasing the Cd accumulation in cabbages. Additionally, models were developed to predict the enrichment of Cd in flowering cabbages, in which oxalate-Cd, DCB-Fe, and NaOAc-Al in soils were determined to be the most important factors that affect the Cd enrichment in flowering cabbages. In this study, we determine the important role of soil secondary minerals in affecting the transfer of Cd in soil-cabbage systems in the PRD. These observations are important to evaluate the accumulation of Cd in vegetables in subtropical zones.
显示更多 [+] 显示较少 [-]Elevated ozone negatively affects photosynthesis of current-year leaves but not previous-year leaves in evergreen Cyclobalanopsis glauca seedlings
2014
Zhang, Weiwei | Feng, Zhaozhong | Wang, Xiaoke | Niu, Junfeng
To assess the effects of leaf age/layer on the response of photosynthesis to chronic ozone (O3), Cyclobalanopsis glauca seedlings, a dominant evergreen broadleaf tree species in sub-tropical regions, were exposed to either ambient air (AA) or elevated O3 (AA + 60 ppb O3, E-O3) for two growing seasons in open-top chambers. Chlorophyll content, gas exchange and chlorophyll a fluorescence were investigated three times throughout the 2nd year of O3 exposure. Results indicated that E-O3 decreased photosynthetic parameters, particularly light-saturated photosynthesis rate, stomatal conductance and effective quantum yield of PSII photochemistry of current-year leaves but not previous-year leaves. Stomatal conductance of plants grown under ambient conditions partially contributed to the different response to E-O3 between leaf layers. Light radiation or other physiological and biochemical processes closely related to photosynthesis might play important roles. All suggested that leaf ages or layers should be considered when assessing O3 risk on evergreen woody species.
显示更多 [+] 显示较少 [-]