细化搜索
结果 1-10 的 213
Enhanced desorption of cationic and anionic metals/metalloids from co-contaminated soil by tetrapolyphosphate washing and followed by ferrous sulfide treatment 全文
2022
Zheng, Mingming | Cao, Menghua | Yang, Danhua | Tu, Shuxin | Xiong, Shuanglian | Shen, Wenjuan | Zhou, Haiyan
In this study, a novel approach was employed for the remediation of cationic and anionic metals/metalloids co-contaminated soil by tetrapolyphosphate enhanced soil washing coupled with ferrous sulfide treatment. Tetrapolyphosphate could simultaneously enhance the desorption of cationic metals (Pb and Zn) and anionic metal/metalloid (Cr and As) from the contaminated soil in the whole tested pH range of 2–10. With addition of 0.15 mol/L tetrapolyphosphate at pH 7.0, the removal ratio of Pb, Zn, As and Cr could achieve 83.1%, 70.4%, 75.7% and 66.4% respectively. The fractionation analysis of heavy metals/metalloids demonstrated the release of exchangeable and Fe/Mn bound forms contributed to most desorption of Pb and Zn. The decreases of non-specifically sorbed form and amorphous and poorly-crystalline hydrous oxides of Fe and Al bound form were responsible for most removal of As. The comparison with other common washing agents (EDTA, oxalate and phosphate) under their respective optimal dosage could confirm that tetrapolyphosphate was superior to simultaneously desorb the cationic and anionic metals/metalloids with higher efficiency. After 12 h, applying 150 mg/L FeS at pH 3.5 could totally remove Pb, Zn, As and Cr from the washing effluent by sulfide precipitation, reduction and adsorption processes. Higher pH would inhibit the removal of As and Cr by FeS. Meanwhile, the residual of tetrapolyphosphate could be totally recovered from the washing effluent by employing anion exchange resin. This study suggests tetrapolyphosphate enhanced soil washing coupled with ferrous sulfide treatment is a promising approach for remediation of cationic and anionic metals/metalloids co-contaminated soil in view of its high efficiency and simple operation.
显示更多 [+] 显示较少 [-]The underappreciated role of natural organic matter bond Hg(II) and nanoparticulate HgS as substrates for methylation in paddy soils across a Hg concentration gradient 全文
2022
Liu, Jiang | Lu, Benqi | Poulain, Alexandre J. | Zhang, Rui | Zhang, Tong | Feng, Xinbin | Meng, Bo
Rice consumption is the major pathway for human methylmercury (MeHg) exposure in inland China, especially in mercury (Hg) contaminated regions. MeHg production, a microbially driven process, depends on both the chemical speciation of inorganic divalent mercury, Hg(II), that determines Hg bioavailability for methylation. Studies have shown that Hg(II) speciation in contaminated paddy soils is mostly controlled by natural organic matter and sulfide levels, which are typically thought to limit Hg mobility and bioavailability. Yet, high levels of MeHg are found in rice, calling for reconsideration of the nature of Hg species bioavailable to methylators in paddy soils. Here, we conducted incubation experiments using a multi-isotope tracer technique including ¹⁹⁸Hg(NO₃)₂, natural organic matter bond Hg(II) (NOM-¹⁹⁹Hg(II)), ferrous sulfide sorbed Hg(II) (≡FeS-²⁰⁰Hg(II)), and nanoparticulate mercuric sulfide (nano-²⁰²HgS), to investigate the relative importance of geochemically diverse yet relevant Hg(II) species on Hg methylation in paddy soils across a Hg concentration gradient. We show that methylation rates for all Hg(II) species tested decreased with increasing Hg concentrations, and that methylation rates using NOM-¹⁹⁹Hg(II) and nano-²⁰²HgS as substrates were similar or greater than rates obtained using the labile ¹⁹⁸Hg(NO₃)₂ substrate. ≡FeS-²⁰⁰Hg(II) yielded the lowest methylation rate in all sites, and thus the formation of FeS is likely a sink for labile ¹⁹⁸Hg(NO₃)₂ in sulfide-rich paddy soils. Moreover, the variability in the methylation data for a given site (1 to 5-fold variation depending on the Hg species) was smaller than what was observed across the Hg concentration gradient (10³–10⁴ fold variation between sites). These findings emphasize that at broad spatial scales, site-specific characteristics, such as microbial community structure, need to be taken into consideration, alongside the nature of the Hg substrate available for methylation, to determine net MeHg production. This study highlights the importance of developing site-specific strategies for remediating Hg pollution.
显示更多 [+] 显示较少 [-]Metagenomic exploration of multi-resistance genes linked to microbial attributes in active nonferrous metal(loid) tailings 全文
2021
(Karen A.),
Mine tailings sites are considered as a continuous source of discharged metal(loid)s and residual organic flotation reagents. They are extremely toxic environments representing unique ecological niches for microbial communities. Mine tailings as a source of multi-resistance genes have been poorly investigated. Metagenomic analysis for four active nonferrous metal(loid) tailings sites with different environmental parameters was conducted. The abundance of Thiobacillus, able to tolerate acidity and showing iron- and sulfur/sulfide oxidation capacities, was significantly different (p < 0.05) between acid and neutral tailings sites. Correlation analyses showed that Zn, Pb, TP, Cd, and Cu were the main drivers influencing the bacterial compositions. Multi-metal resistance genes (MRGs) and antibiotic resistance genes (ARGs), such as baca and copA, were found to be co-selected by high concentrations of metal(loid)s tailings. The main contributors to different distributions of MRGs were Thiobacillus and Nocardioides genus, while genera with low abundance (<0.1%) were the main contributors for ARGs. Functional metabolic pathways related to Fe–S metabolism, polycyclic aromatic hydrocarbons (PAHs) degradation and acid stress were largely from Altererythrobacter, Lysobacter, and Thiobacillus, respectively. Such information provides new insights on active tailings with highly toxic contaminants. Short-term metal(loid) exposure of microorganism in active nonferrous metal(loid) tailings contribute to the co-occurrence of ARGs and MRGs, and aggravation of tailings acidification. Our results recommend that the management of microorganisms involved in acid tolerance and metal/antibiotic resistance is of key importance for in-suit treatment of the continuous discharge of tailings with multiple metal(loid) contaminants into impoundments.
显示更多 [+] 显示较少 [-]Contrasting seasonal variations of geochemistry and microbial community in two adjacent acid mine drainage lakes in Anhui Province, China 全文
2021
Xin, Ruirui | Banda, Joseph Frazer | Hao, Chunbo | Dong, Huiyuan | Pei, Lixin | Guo, Dongyi | Wei, Pengfei | Du, Zerui | Zhang, Yi | Dong, Hailiang
Acid mine drainage (AMD) is generated by the bio-oxidation of sulfide minerals. To understand the AMD formation and evolution, it is necessary to determine the composition and variation of acidophilic community, and their role in AMD ecosystem. In this study, we compared seasonal variations of geochemistry and microbial composition of two adjacent AMD lakes with different formation histories in Anhui Province, China. Lake Paitu (PT) formed in 1970s near a mine dump and the pH was in the range of 3.01–3.16, with the lowest in spring and summer while the highest in winter. The main ions in PT were Al and SO₄²⁻, whereas Fe concentration was relatively low. The concentrations of these ions were the lowest in summer and the highest in winter. Lake Tafang (TF) formed in around 2013 in a pit was more acidic (pH 2.43–2.75), but the seasonal variation of pH was the same as PT. Compared with Lake PT, TF had higher Fe, lower Al and SO₄²⁻ concentrations, and showed no significant seasonal changes. Despite salient seasonal variations of prokaryotic composition in Lake PT, Ferrovum was the major iron-oxidizing bacterium in most seasons. Furthermore, Lake PT was also rich in heterotrophic bacteria (48.6 ± 15.9%). Both prokaryotic diversity and evenness of Lake TF were lower than PT, and chemolithotrophic iron-oxidizing bacteria (71.7 ± 25.4%) were dominant in almost all samples. Besides Ferrovum, more acid tolerant iron-oxidizer Leptospirillum and Acidithiobacillus were also abundant in Lake TF. Chlamydomonas was the major eukaryote in Lake PT and it flourished repeatedly at the end of December, causing an extremely high chlorophyll a concentration (587 μg/L) at one sampling site in 2016, which provided rich nutrients for heterotrophic bacteria. The main alga in Lake TF was Chrysonebula, but its concentration was low, apparently because of the strong acidity and dark red color of lake water.
显示更多 [+] 显示较少 [-]Tracing riverine sulfate source in an agricultural watershed: Constraints from stable isotopes 全文
2021
Liu, Jinke | Han, Guilin
The sulfate pollution in water environment gains more and more concerns in recent years. The discharge of domestic, municipal, and industrial wastewaters increases the riverine sulfate concentrations, which may cause local health and ecological problems. To better understand the sources of sulfate, this study collected water samples in a typical agricultural watershed in East Thailand. The source apportionment of sulfide was conducted by using stable isotopes and receptor models. The δ³⁴SSO₄ value of river water varied from 1.2‰ to 16.4‰, with a median value of 8.9‰. The hydrochemical data indicated that the chemical compositions of Mun river water were affected by the anthropogenic inputs and natural processes such as halite dissolution, carbonate, and silicate weathering. The positive matrix factorization (PMF) model was not suitable to trace source of riverine sulfate, because the meaning of the extracted factors seems to be vague. Based on the elemental ratio and isotopic composition, the inverse model yielded the relative contribution of sulfide oxidation (approximately 46.5%), anthropogenic input (approximately 41.5%), and gypsum dissolution (approximately 12%) to sulfate in Mun river water. This study indicates that the selection of models for source apportionment should be careful. The large contribution of anthropogenic inputs calls an urgent concern of the Thai government to establish effective management strategies in the Mun River basin.
显示更多 [+] 显示较少 [-]Leaching of two northern France slag heaps: Influence on the surrounding aquatic environment 全文
2020
Gaulier, Camille | Billon, Gabriel | Lesven, Ludovic | Falantin, Cécilia | Superville, Pierre-Jean | Baeyens, Willy | Gao, Yue
After the exploitation of coal mines in the 19th and 20th centuries in northern France, many mining slag heaps (SH) were left without any particular management or monitoring. Currently, the influence of these SHs on the quality of surrounding wetlands is hardly known.The purpose of this work is to determine the water quality in the neighbourhood of two SHs located near the city of Douai and its influence on the distribution of aquatic invertebrates in local wetlands. Our approach involves (1) the spatial and temporal characterization of the water composition (anions, major elements, sulphide, DOC and alkalinity) and of the biological diversity (aquatic invertebrates) and (2), based on this chemical and biological screening, the establishment of relationships between water quality and biodiversity distribution through multivariate data analysis. The results clearly indicate that substantial leaching from the slag heaps occurs, given the very high concentrations of dissolved sulphates (in the range of 2 g L⁻¹). While the pH remains weakly basic, indicating that the leaching water has been neutralized by the highly carbonated regional substratum, high levels of biodegradable organic matter and sulphate contents have been noticed. They sporadically cause significant drops in dissolved oxygen and the occurrence of dissolved sulphides that massively reduce biodiversity, qualitatively and quantitatively. In Summer, oxygen saturation is generally lower due to the higher rate of organic matter degradation, and the risk of anoxic episodes therefore increases. Finally, as wetlands are vulnerable environments, these preliminary results suggest that monitoring and management of these sites must be attempted quickly to avoid the degradation of those valuable habitats.
显示更多 [+] 显示较少 [-]Effect of temperature on the sulfur fate during hydrothermal carbonization of sewage sludge 全文
2020
Wang, Zhexian | Zhai, Yunbo | Wang, Tengfei | Peng, Chuan | Li, Shanhong | Wang, Bei | Liu, Xiangmin | Li, Caiting
To understand the effect of reaction temperature on sulfur during hydrothermal carbonization (HTC) of sewage sludge (SS), seven group of temperature (180–300 °C) were chosen to investigate the distributions and evolution of sulfur-containing compounds in hydrochar and the liquid products. Elemental analysis, X-ray photoelectron spectroscopy (XPS), and X-Ray powder diffraction (XRD) were used to characterize the distribution of sulfur in hydrochar. The concentrations of sulfate ions and sulfide were determined in the liquid sample. The experimental results showed that as the temperature increased, the O/C ratio decreased because of the improved carbonization degree of SS. After hydrothermal carbonization, 90% of the sulfur in SS remained in hydrochar. As the temperature increased, the amount of sulfur in the liquid, mainly in the form of sulfate ions, tended to decrease. However, the experimental results for the gas phase were the opposite of the liquid phase.
显示更多 [+] 显示较少 [-]Seasonal variability of extremely metal rich acid mine drainages from the Tharsis mines (SW Spain) 全文
2020
Moreno González, Raúl | Cánovas, Carlos Ruiz | Olías, Manuel | Macías, Francisco
Seasonal variability of extremely metal rich acid mine drainages from the Tharsis mines (SW Spain) 全文
2020
Moreno González, Raúl | Cánovas, Carlos Ruiz | Olías, Manuel | Macías, Francisco
The Tharsis mine is presently abandoned, but the past intense exploitation has left large dumps and other sulphide-rich mining wastes in the area generating acid mine drainages (AMD). The main goal of this work is to study the effect of hydrogeochemical processes, hydrological regime and the waste typology on the physicochemical parameters and dissolved concentrations of pollutants in a deeply AMD-affected zone. Extreme leachates are produced in the area, reaching even negative pH and concentrations of up to 2.2 g/L of As and 194 g/L of Fe. The results of the comparison of ore grades of sulphide deposits with dissolved concentrations in waters shows that Pb is the least mobile element in dissolution probably due to the precipitation of Pb secondary minerals and/or its coprecipitation on Fe oxyhydroxysulphates. Arsenic, Cr, and V are also coprecipitated with Fe minerals. Seasonal patterns in metal contents were identified: elements coming from the host rocks, such as Al, Mn and Ni, show their maximum values in the dry period, when dilution with freshwater is lower and the interaction of water-rock processes and evaporation is higher. On the other hand, As, Cr, Fe, Pb and V show minimum concentrations in the dry period due to intense Fe oxyhydroxysulphate precipitation. In this sense, large sulphide rich waste heaps would be a temporal sink of these elements (i.e. Pb, As, Cr and V) in the dry period, and a significant source upon intense rainfalls.
显示更多 [+] 显示较少 [-]Seasonal variability of extremely metal rich acid mine drainages from the Tharsis mines (SW Spain) 全文
2020
Moreno González, Raúl | Ruiz Cánovas, Carlos | Olías, Manuel | Macías, F. | Ministerio de Economía y Competitividad (España) | European Commission
The Tharsis mine is presently abandoned, but the past intense exploitation has left large dumps and other sulphide-rich mining wastes in the area generating acid mine drainages (AMD). The main goal of this work is to study the effect of hydrogeochemical processes, hydrological regime and the waste typology on the physicochemical parameters and dissolved concentrations of pollutants in a deeply AMD-affected zone. Extreme leachates are produced in the area, reaching even negative pH and concentrations of up to 2.2 g/L of As and 194 g/L of Fe. The results of the comparison of ore grades of sulphide deposits with dissolved concentrations in waters shows that Pb is the least mobile element in dissolution probably due to the precipitation of Pb secondary minerals and/or its coprecipitation on Fe oxyhydroxysulphates. Arsenic, Cr, and V are also coprecipitated with Fe minerals. Seasonal patterns in metal contents were identified: elements coming from the host rocks, such as Al, Mn and Ni, show their maximum values in the dry period, when dilution with freshwater is lower and the interaction of water-rock processes and evaporation is higher. On the other hand, As, Cr, Fe, Pb and V show minimum concentrations in the dry period due to intense Fe oxyhydroxysulphate precipitation. In this sense, large sulphide rich waste heaps would be a temporal sink of these elements (i.e. Pb, As, Cr and V) in the dry period, and a significant source upon intense rainfalls. | This work was supported by the Spanish Ministry of Economic and Competitiveness through the projects CGL2016-78783-C2-1-R (SCYRE) and by H2020 European Institute of Innovation and Technology (EIT RawMaterials) through the projects Modular recovery process services for hydrometallurgy and water treatment (MORECOVERY). The authors thank to Prof. Yong Sik Ok (Associate Editor) and five different reviewers for their helpful comments that notably improved the quality of the manuscript. | Peer reviewed
显示更多 [+] 显示较少 [-]Sulfide reduction can significantly enhance transport of biochar fine particles in saturated porous medium 全文
2020
Ma, Pengkun | Chen, Wei
The release of fine particles from biochar materials applied in the environment may have important environmental implications, such as mobilization of environmental contaminants. In natural environments biochar fine particles can undergo various transformation processes, which may change their surface chemistry and consequently, the mobility of the particles. Here, we show that sulfide reduction can significantly alter the transport of wheat-straw- and pine-wood-derived biochar fine particles in saturated porous media. Counterintuitively, the sulfide-reduced biochar particles exhibited greater mobility in artificial groundwater than their non-reduced counterparts, even though reduction led to decrease of surface charge negativity and increase of hydrophobicity (from the removal of surface O-functional groups), both should favor particle deposition, as predicted based on extended Derjaguin–Landau–Verwey–Overbeek (XDLVO) theory. Using transport experiments conducted in single-cation background solutions containing K⁺, Mg²⁺ or Ca²⁺ under different pH conditions, we show that the surprisingly greater mobility of sulfide-reduced biochar particles was attributable to the removal of surface carboxyl groups during reduction, as this markedly alleviated particle deposition through cation bridging, wherein Ca²⁺ acted as the bridging agent in linking the surface O-functional groups of biochar particles and quartz sand. These findings show the critical roles of surface properties in dictating the mobility of biochar fine particles and call for further understanding of their transport properties, which apparently cannot be simply extrapolated based on the findings of other (engineered) carbonaceous nanomaterials.
显示更多 [+] 显示较少 [-]Arsenic contamination in abandoned and active gold mine spoils in Ghana: Geochemical fractionation, speciation, and assessment of the potential human health risk 全文
2020
Mensah, Albert Kobina | Marschner, Bernd | Shaheen, Sabry M. | Wang, Jianxu | Wang, Shan-Li | Rinklebe, Jörg
This work aims to study the pseudo-total content, geochemical fractions, and species of arsenic (As) in the bulk soil and in the coarse and fine particles of top soil and soil profiles collected from active and abandoned gold mine spoils in Ghana. The human health risk for adults (male and female) and children has been assessed. To achieve our aims, we collected 51 samples, characterized them, determined the total As content, and sequentially extracted the geochemical fractions of As including water-soluble and un-specifically bound As (FI); specific-sorbed/exchangeable As (FII); poorly (FIII)- and well-crystalline (IV) Fe oxide; and residual/sulphide fraction (FV). In selected samples, As species were determined using synchrotron-based X-ray absorption near edge structure (XANES). Pseudo-total As contents varied from 1807 to 8400 mg kg⁻¹, with the extremes occurring at the abandoned mine spoil. Arsenic was almost 10-fold higher in the fine particles (<0.63 μm) than in the coarse particles. Arsenic was mainly associated with FIII and FV, indicating that the distribution of As in these spoils is governed by their contents of amorphous Fe oxides, sulphides and As bearing minerals. The XANES results indicated that scorodite (FeAsSO₄ = 65–76%) and arsenopyrite (FeAsS = 24–35%) are the two major As-containing minerals in the spoils. The potential mobility (PMF = ∑FI-FIV) of As in the fine particles of the top soil was higher (48–61%) than in the coarse particles (25–44%). The mobile fraction (MF) (FI+FII) and PMF of As in the coarse particles of the profiles increased with depth while it decreased in the fine particles. The median hazard index values indicated an elevated human health risk, especially for children. The high contamination degree and potential mobility of As at the studied mine spoils indicate high potential risk for human and environmental health.
显示更多 [+] 显示较少 [-]