细化搜索
结果 1-10 的 1,528
Pluies acides, production de nitrate dans les sols forestiers et annees de secheresse estivale: cofacteurs de risque de deperissement des forets. Reflexions sur la synergie.
1989
Bardy J.A.
Organic aerosol compositions and source estimation by molecular tracers in Dushanbe, Tajikistan
2022
Chen, Pengfei | Kang, Shichang | Zhang, Lanxin | Abdullaev, Sabur F. | Wan, Xin | Zheng, Huijun | Maslov, Vladimir A. | Abdyzhapar uulu, Salamat | Safarov, Mustafo S. | Tripathee, Lekhendra | Li, Yizhong
To elucidate the molecular composition and sources of organic aerosols in Central Asia, carbonaceous compounds, major ions, and 15 organic molecular tracers of total suspended particulates (TSP) were analyzed from September 2018 to August 2019 in Dushanbe, Tajikistan. Extremely high TSP concentrations (annual mean ± std: 211 ± 131 μg m⁻³) were observed, particularly during summer (seasonal mean ± std: 333 ± 183 μg m⁻³). Organic carbon (OC: 11.9 ± 7.0 μg m⁻³) and elemental carbon (EC: 5.1 ± 2.2 μg m⁻³) exhibited distinct seasonal variations from TSP, with the highest values occurring in winter. A high concentration of Ca²⁺ was observed (11.9 ± 9.2 μg m⁻³), accounting for 50.8% of the total ions and reflecting the considerable influence of dust on aerosols. Among the measured organic molecular tracers, levoglucosan was the predominant compound (632 ± 770 ng m⁻³), and its concentration correlated significantly with OC and EC during the study period. These findings highlight biomass burning (BB) as an important contributor to the particulate air pollution in Dushanbe. High ratios of levoglucosan to mannosan, and syringic acid to vanillic acid suggest that mixed hardwood and herbaceous plants were the main burning materials in the area, with softwood being a minor one. According to the diagnostic tracer ratio, OC derived from BB constituted a large fraction of the primary OC (POC) in ambient aerosols, accounting for an annual mean of nearly 30% and reaching 63% in winter. The annual contribution of fungal spores to POC was 10%, with a maximum of 16% in spring. Measurements of plant debris, accounting for 3% of POC, divulged that these have the same variation as fungal spores.
显示更多 [+] 显示较少 [-]Source analysis of the tropospheric NO2 based on MAX-DOAS measurements in northeastern China
2022
Liu, Feng | Xing, Chengzhi | Su, Pinjie | Luo, Yifu | Zhao, Ting | Xue, Jiexiao | Zhang, Guohui | Qin, Sida | Song, Youtao | Bu, Naishun
Ground-based Multi-Axis Differential Optical Absorption Spectroscopy (Max-DOAS) measurements of nitrogen dioxide (NO₂) were continuously obtained from January to November 2019 in northeastern China (NEC). Seasonal variations in the mean NO₂ vertical column densities (VCDs) were apparent, with a maximum of 2.9 × 10¹⁶ molecules cm⁻² in the winter due to enhanced NO₂ emissions from coal-fired winter heating, a longer photochemical lifetime and atmospheric transport. Daily maximum and minimum NO₂ VCDs were observed, independent of the season, at around 11:00 and 13:00 local time, respectively, and the most obvious increases and decreases occurred in the winter and autumn, respectively. The mean diurnal NO₂ VCDs at 11:00 increased to at 08:00 by 1.6, 5.8, and 6.7 × 10¹⁵ molecules cm⁻² in the summer, autumn and winter, respectively, due to increased NO₂ emissions, and then decreased by 2.8, 4.2, and 5.1 × 10¹⁵ molecules cm⁻² at 13:00 in the spring, summer, and autumn, respectively. This was due to strong solar radiation and increased planetary boundary layer height. There was no obvious weekend effect, and the NO₂ VCDs only decreased by about 10% on the weekends. We evaluated the contributions of emissions and transport in the different seasons to the NO₂ VCDs using a generalized additive model, where the contributions of local emissions to the total in the spring, summer, autumn, and winter were 89 ± 12%, 92 ± 11%, 86 ± 12%, and 72 ± 16%, respectively. The contribution of regional transport reached 26% in the winter, and this high contribution value was mainly correlated with the northeast wind, which was due to the transport channel of air pollutants along the Changbai Mountains in NEC. The NO₂/SO₂ ratio was used to identify NO₂ from industrial sources and vehicle exhaust. The contribution of industrial NO₂ VCD sources was >66.3 ± 16% in Shenyang due to the large amount of coal combustion from heavy industrial activity, which emitted large amounts of NO₂. Our results suggest that air quality management in Shenyang should consider reductions in local NO₂ emissions from industrial sources along with regional cooperative control.
显示更多 [+] 显示较少 [-]Nocturnal pollutant uptake contributes significantly to the total stomatal uptake of Mangifera indica
2022
Datta, Savita | Sharma, Anita | Sinha, Baerbel
DO₃SE (Deposition of Ozone for Stomatal Exchange), is a dry deposition model, designed to assess tropospheric ozone risk to vegetation, and is based on two alternative algorithms to estimate stomatal conductance: multiplicative and photosynthetic. The multiplicative model has been argued to perform better for leaf-level and regional-level application. In this study, we demonstrate that the photosynthetic model is superior to the multiplicative model even for leaf-level studies using measurements performed on Mangifera indica. We find that the multiplicative model overestimates the daytime stomatal conductance, when compared with measured stomatal conductance and prescribes zero conductance at night while measurements show an average conductance of 100 mmol(H₂O)m⁻²s⁻¹ between 9 p.m. and 4 a.m. The daytime overestimation of the multiplicative model can be significantly reduced when the model is modified to include a response function for ozone-induced stomatal closure. However, nighttime pollutant uptake fluxes can only be accurately assessed with the photosynthetic model which includes the stomatal opening at night during respiration and is capable of reproducing the measured nighttime stomatal conductance. At our site, the nocturnal flux contributes 64%, 39%, 46%, and 88% of the total for NO₂ uptake in winter, summer, monsoon, and post-monsoon, respectively. For SO₂, nocturnal uptake amounts to 35%, 28%, 28%, and 44% in winter, summer, monsoon, and post-monsoon, respectively while for ozone the nighttime uptake contributes 30%, 17%, 18%, and 29% of the total stomatal uptake in winter, summer, monsoon, and post-monsoon respectively.
显示更多 [+] 显示较少 [-]Microplastics in Flathead Lake, a large oligotrophic mountain lake in the USA
2022
Xiong, Xiong | Tappenbeck, Tyler H. | Wu, Chenxi | Elser, James J.
Microplastics are contaminants that are closely associated with human activity and are often abundant even in remote areas. As the largest natural freshwater lake in the western USA, Flathead Lake is a suitable site to study microplastics in lakes in less-populated areas of North America. Our assessment of microplastics in lake surface water samples showed that microplastic densities and concentrations in Flathead Lake were similar to those in other lakes located in less-populated areas around the world, with densities ranging from 8.00 × 10⁴ to 4.22 × 10⁵ particles/km² with a mean concentration of 1.89 × 10⁵ particles/km². Dry deposition rates for microplastics ranged from 4 to 140 particles/m²/day with an average of 69 particles/m²/day and were significantly higher in the fall. Microplastic concentrations in wet deposition ranged from 0.006 particles/mL to 0.050 particles/mL with highest concentrations in winter and lowest in summer. Fibrous microplastics were predominant in both lake water and atmospheric deposition. The high densities of microplastics in the sample sites located near the Flathead River inlet suggests that the river is an important source of microplastics to Flathead Lake. The high densities of microplastics and high proportions of non-fibrous microplastics near populated areas of the lake imply that local human activities also affect microplastics in Flathead Lake. Although the annual flux of microplastics in dry deposition was higher than that in wet deposition, the relatively modest difference suggests that precipitation might enhance the deposition of microplastics. The results of this study indicate that instituting increased control measures that target both reducing the microfibers generated by laundry and improving the overall level of plastic waste management in the watershed may help in controlling microplastic levels in Flathead Lake.
显示更多 [+] 显示较少 [-]Derivation of copper water quality criteria in the Bohai Sea of China considering the effects of multiple environmental factors on copper toxicity
2022
Li, Yang | Mu, Di | Wu, Hong-Qing | Tan, Dan-Dan | Liu, Xian-Hua | Sun, Jun | Ji, Zhi-Yong
Copper has become one of the most important heavy metal pollutants in the environment because of its wide application and high toxicity, but research on water quality criteria (WQCs) on copper is limited, especially the derivation of seawater WQC. In addition, the toxicity of copper in the seawater system is affected by various environmental factors. Therefore, establishing a WQC that meets the characteristics of the regional environment is a top priority. The correlations between four factors of temperature, salinity, pH, dissolved organic carbon (DOC) and the toxic effect values of copper were analyzed in this study, and the temperature was determined as the most influential factor among the four factors in the Bohai Sea. A specific correlation between temperature and the toxic effects of copper was identified, and WQCs were derived based on the identified correlation and the variations of the Bohai Sea's temperature in different seasons by species sensitivity distribution (SSD) method. Under the condition of the winter, spring, autumn, and summer with an average water temperature of 0.09, 15.96, 17.83, and 24.87 °C, the obtained short-term water quality criteria (SWQCs) were 44.29, 4.70, 4.31, and 3.33 μg/L; the long-term water quality criteria (LWQCs) were 18.14, 1.93, 1.77 and 1.36 μg/L. The findings indicated the importance of introducing specific environmental conditions during the derivation process. This work could provide valuable information for pollution prevention and aquatic life protection in the Bohai Sea and provide a valuable reference for the derivation of criteria in other regions alike.
显示更多 [+] 显示较少 [-]Adaptive resilience of roadside trees to vehicular emissions via leaf enzymatic, physiological, and anatomical trait modulations
2022
Unplanned urbanization and heavy automobile use by the rapidly growing population contribute to a variety of environmental issues. Roadside plants can mitigate air pollution by modifying their enzymatic activity, physiological and anatomical traits. Plant enzymes, physiological and anatomical traits play an important role in adaptation and mitigation mechanisms against vehicular emissions. There is a significant gap in understanding of how plant enzymes and anatomical traits respond or how they participate in modulating the effect of vehicular emissions/air pollution. Modulation of leaf anatomical traits is also useful in regulating plant physiological behavior. Hence, the present study was conducted to evaluate the effects of vehicular pollution on the enzymatic activity, physiological, and anatomical traits of plant species that grow in forests (S1) and alongside roads (S2-1 km away from the S1 site) during different seasons. The present study examines four commonly found roadside tree species i.e. Grevillea robusta, Cassia fistula, Quercus leucotrichophora and Cornus oblonga. The study found that the activities of catalase and phenylalanine ammonium enzymes were higher in G. robusta species of roadside than control site (S1). Non-enzymatic antioxidants such as flavonoid and phenol were also found in higher concentrations in roadside tree species during the summer season. However, the measured values of physiological traits were higher in Q. leucotrichophora tree species of S1 during the summer season. When compared to the other species along the roadside, Q. leucotrichophora had the highest number of stomata and epidermal cells during the summer season. Hence, we found that tree species grown along the roadside adapted towards vehicular emissions by modulating their enzymatic, physiological, and anatomical traits to mitigate the effect of air pollution.
显示更多 [+] 显示较少 [-]Latitudinal difference in the molecular distributions of lipid compounds in the forest atmosphere in China
2022
Zhang, Donghuan | Ren, Hong | Hu, Wei | Wu, Libin | Ren, Lujie | Deng, Junjun | Zhang, Qiang | Sun, Yele | Wang, Zifa | Kawamura, Kimitaka | Fu, Pingqing
Lipids are important biogenic markers to indicate the sources and chemical process of aerosol particles in the atmosphere. To better understand the influences of biogenic and anthropogenic sources on forest aerosols, total suspended particles (TSP) were collected at Mt. Changbai, Shennongjia, and Xishuangbanna that are located at different climatic zones in northeastern, central and southwestern China. n-Alkanes, fatty acids and n-alcohols were detected in the forest aerosols based on gas chromatography-mass spectrometry. The total concentrations of aliphatic compounds ranged from 15.3 ng m⁻³ to 566 ng m⁻³, and fatty acids were the most abundant (44–95%) followed by n-alkanes and n-alcohols. Low molecular weight- (LFAs) and unsaturated fatty acids (UnFAs) showed diurnal variation with higher concentrations during the nighttime in summer, indicating the potential impact from microbial activities on forest aerosols. The differences of oleic acid (C₁₈:₁) and linoleic acid (C₁₈:₂) concentrations between daytime and nighttime increased at lower latitude, indicating more intense photochemical degradation occurred at lower latitude regions. High levels of n-alkanes during daytime in summer with higher values of carbon preference indexes, combining the strong odd carbon number predominance with a maximum at C₂₇ or C₂₉, implied the high contributions of biogenic sources, e.g., higher plant waxes. In contrast, higher concentrations of low molecular weight n-alkanes were detected in winter forest aerosols. Levoglucosan showed a positive correlation (R² > 0.57) with high- and low molecular weight aliphatic compounds in Mt. Changbai, but such a correlation was not observed in Shennongjia and Xishuangbanna. These results suggest the significant influence of biomass burning in Mt. Changbai, and fossil fuel combustion might be another important anthropogenic source of forest aerosols. This study adds useful information to the current understanding of forest organic aerosols at different geographical locations in China.
显示更多 [+] 显示较少 [-]Emissions of biogenic volatile organic compounds from urban green spaces in the six core districts of Beijing based on a new satellite dataset
2022
Li, Xin | Chen, Wenjing | Zhang, Hanyu | Xue, Tao | Zhong, Yuanwei | Qi, Min | Shen, Xianbao | Yao, Zhiliang
Urban green spaces (UGSs) are often positively associated with the health of urban residents. However, UGSs may also have adverse health effects by releasing biogenic volatile organic compounds (BVOCs) and increasing the ambient concentrations of ozone (O₃) and secondary organic aerosols in urban areas. BVOC emissions from UGSs might be underestimated because of the lack of consideration of the UGS land-use type in urban areas. As such, in this study, we used a newly released satellite dataset, Sentinel-2, with a resolution of 10 m, to derive the classification distribution of UGSs and predict the UGS emissions of BVOCs in Beijing in 2019. The results showed that the annual emissions of BVOCs from UGSs were approximately 2.9 Gg C (95% confidence interval (CI): 2.4–3.3) in the six core districts, accounting for approximately 39% of the total UGS emissions in Beijing. Compared with the results based on Sentinel-2, the BVOC emissions might be underestimated by approximately 37% (95% CI: 11–63) using the commonly used satellite dataset. UGSs produced the highest BVOC emissions in summer (from June to August), accounting for 75.2% of the annual emissions. UGSs contributed the most to the O₃ formation potential in summer, accounting for 41.5% of the total. We could attribute a considerable amount of the O₃ concentration (27.0 μg m⁻³, 95% CI: 21.4–32.6) to the UGS BVOCs produced in the core districts of Beijing in July. The new BVOC emissions dataset based on Sentinel-2 vegetation information facilitates modeling studies on the formation of surface O₃ in urban areas and assessments of the impact of UGSs on public health.
显示更多 [+] 显示较少 [-]Terrigenous export and ocean currents' diffusion of organophosphorus flame retardants along China's adjacent seas
2022
Zheng, Hongyuan | Cai, Minghong | Yang, Chao | Gao, Yuan | Chen, Zhiyi | Liu, Yanguang
High demands for but strict regulatory measures on Organophosphorus Flame Retardants (OPFRs) have resulted in mainland China transitioning from the region that imports OPRFs to one that exports these substances. Simultaneously, large quantities of terrigenous OPFRs have been exported to adjacent seas by the major river systems, particularly the Yangtze River. This study examined the presence of ten OPFRs in China's adjacent seas. High levels of OPFRs were observed in seas south of mainland China, with Tris (2-chloroethyl) phosphate (TCEP) and Tris (1,3-dichloro-2-propyl) phosphate (TDCPP) dominant. The terrigenous OPFRs were redistributed by the ocean surface currents, with OPFRs tending to accumulate in regions with lower current speed. The producers of OPFRs are mainly distributed along the Haihe, Yellow, and Yangtze river systems. The application of OPFRs to electric vehicle charging stations, charging connectors, and 5G infrastructure in the Chinese mainland will likely drive rapid growth in OPFR related industry in the future. The diffusion trend map of OPFR indicated that the Bohai Sea and the central northern Yellow Sea are at high risk of ecological damage in the spring. The offshore region of the north of the South China Sea tended to aggregate more OPFRs in summer. Regions of the OPFR aggregation effect were at a higher risk of ecological damage.
显示更多 [+] 显示较少 [-]