细化搜索
结果 1-4 的 4
Burden of disease induced by public overexposure to solar ultraviolet radiation (SUVR) at the national and subnational levels in Iran, 2005–2019
2022
Abtahi, Mehrnoosh | Dobaradaran, Sina | Koolivand, Ali | Jorfi, Sahand | Saeedi, Reza
Estimating the burden of diseases induced by overexposure to solar ultraviolet radiation (SUVR) can help to prioritize environmental health interventions. The age-sex specific and cause-specific mortality and disability-adjusted life years (DALYs) attributable to overexposure to SUVR at the national and subnational levels in Iran, 2005–2019 were estimated. The burden of disease induced by overexposure to SUVR was quantified in four steps as follows: (1) estimating exposure to SUVR, (2) estimating total incidences and deaths of target causes, (3) assessing population attributable fractions of the target causes for the SUVR, and (4) calculating the attributable burden of disease. The attributable DALYs, deaths, age-standardized DALY rate, and age-standardized death rate at the national level were determined to be respectively 21896, 252, 42.59, and 0.56 in 2005 and were respectively changed to 28665, 377, 38.76, and 0.53 in 2019. The contributions of causes in the attributable DALYs at the national level were different by year and sex and for both sexes in 2019 were as follows: 46.15% for cataract, 20.36% for malignant skin melanoma, 16.07% for sunburn, 12.41% for squamous-cell carcinoma, and 5.01% for the other five causes. The contributions of population growth, population ageing, risk exposure, and risk-deleted DALY rate in the temporal variations of the attributable burden of disease in the country were +20.73%, +20.68%, +2.01%, and −12.51%. The highest and lowest provincial attributable age-standardized DALY rates in 2019 were observed in Fars (46.8) and Ardebil (32.7), respectively. The burden of disease induced by exposure to SUVR caused relatively low geographical inequality in health status in Iran. Due to increasing trends of the SUVR as well as the attributable burden of disease, the preventive interventions against the SUVR overexposure should be considered in the public health action plan all across the country.
显示更多 [+] 显示较少 [-]Spatiotemporal analysis of solar ultraviolet radiation based on Ozone Monitoring Instrument dataset in Iran, 2005–2019
2021
Gholamnia, Reza | Abtahi, Mehrnoosh | Dobaradaran, Sina | Koolivand, Ali | Jorfi, Sahand | Khaloo, Shokooh Sadat | Bagheri, Amin | Vaziri, Mohammad Hossein | Atabaki, Yasamin | Alhouei, Farnaz | Saeedi, Reza
The solar ultraviolet radiation (UVR) at national, provincial and county levels in Iran during 2005–2019 were determined based on Ozone Monitoring Instrument (OMI) dataset. The temporal (annual and monthly) trends and spatial distributions of the UVR in terms of erythemally weighted daily dose (EDD), erythemally weighted irradiance at local solar noon time (EDR), and UV index and the major factors influencing the spatiotemporal trends were analyzed. The population-weighted average values of EDD, EDR, and UV index in Iran were respectively 3631 J/m², 176.3 mW/m², 7.1 in 2005 and rose by 0.22% per year to 3744 J/m², 181.7 mW/m², and 7.3, respectively in 2019, but the annual trend was not statistically significant. The EDD in Iran during the study period exhibited the highest monthly average value in June (6339 J/m²) and the lowest one in December (1263 J/m²). The solar UVA/UVB ratios at the national level during 2005–2019 were considerably lower in summer. The EDD provincial average values in the study period were in the range of 2717 (Gilan) to 4424 J/m² (Fars). The spatiotemporal variations of the solar UVR parameters were well described by the linear models as a function of cloud optical thickness (COT), ozone column amount, surface albedo, latitude, and altitude (R² > 0.961, p value < 0.001) and the temporal changes of the solar UVR parameters were mainly caused by the COT. The results indicated that non-burning exposure to solar UVR in summer can be more efficient for vitamin D synthesis due to higher contribution of UVB in the solar UVR. The spatial distributions and temporal trends should be considered to determine the optimal duration, time and condition of exposure to the solar UVR for the public and occupational training and public health measures.
显示更多 [+] 显示较少 [-]Toxic effects and transcriptome analyses of zebrafish (Danio rerio) larvae exposed to benzophenones
2020
Meng, Qi | Yeung, Karen | Kwok, Man Long | Chung, Chun Ting | Hu, Xue Lei | Chan, King Ming
Sunscreen chemicals, such as benzophenones (BPs), are common environmental contaminants that are posing a growing health concern due to their increasing presence in water, fish, and human systems. Benzoresorcinol (BP1), oxybenzone (BP3), and dioxybenzone (BP8) are the most commonly used BPs for their ability to protect from sunburn by absorbing a broad spectrum of ultraviolet radiation. In this study, zebrafish larvae were used as an in vivo model to investigate the potential risks and molecular mechanisms of the toxic effects of BPs. The effects of these BPs on the gene expression in the aryl hydrocarbon receptor pathway, estrogen receptor pathway, and sex differentiation were detected using quantitative real-time PCR. All BPs were found to function as agonists of the estrogen receptors α and β1, indicating that these BPs likely undergo similar molecular metabolism in vivo, whereby they can activate cytochrome P450 genes and promote the expression of CYP19A and DMRT1. Furthermore, the gene expression profile of larvae after BP3 exposure was evaluated using a whole transcriptome sequencing approach. BP3 affected estradiol biosynthesis and sex differentiation. It also regulated gonadotropin-releasing hormone, thus interfering with the endocrine system. As a xenobiotic toxicant, BP3 upregulated the expression of cytochrome P450 genes (CYP1A and CYP3A65) and glutathione metabolism-related genes (GSTA, GSTM, and GSTP). It also interfered with the nervous system by regulating the calcium signaling pathway. These findings will be useful for understanding the toxicity mechanisms and metabolism of BPs in aquatic organisms and promote the regulation of these chemicals in the environment.
显示更多 [+] 显示较少 [-]Effects of 4-methylbenzylidene camphor (4-MBC) on neuronal and muscular development in zebrafish (Danio rerio) embryos
2016
Li, Vincent Wai Tsun | Tsui, Mei Po Mirabelle | Chen, Xueping | Hui, Michelle Nga Yu | Jin, Ling | Lam, Raymond H. W. | Yu, Richard Man Kit | Murphy, Margaret B. | Cheng Jinping, | Lam, Paul Kwan Sing | Cheng, Shuk Han
The negative effects of overexposure to ultraviolet (UV) radiation in humans, including sunburn and light-induced cellular injury, are of increasing public concern. 4-Methylbenzylidene camphor (4-MBC), an organic chemical UV filter, is an active ingredient in sunscreen products. To date, little information is available about its neurotoxicity during early vertebrate development. Zebrafish embryos were exposed to various concentrations of 4-MBC in embryo medium for 3 days. In this study, a high concentration of 4-MBC, which is not being expected at the current environmental concentrations in the environment, was used for the purpose of phenotypic screening. Embryos exposed to 15 μM of 4-MBC displayed abnormal axial curvature and exhibited impaired motility. Exposure effects were found to be greatest during the segmentation period, when somite formation and innervation occur. Immunostaining of the muscle and axon markers F59, znp1, and zn5 revealed that 4-MBC exposure leads to a disorganized pattern of slow muscle fibers and axon pathfinding errors during the innervation of both primary and secondary motor neurons. Our results also showed reduction in AChE activity upon 4-MBC exposure both in vivo in the embryos (15 μM) and in vitro in mammalian Neuro-2A cells (0.1 μM), providing a possible mechanism for 4-MBC-induced muscular and neuronal defects. Taken together, our results have shown that 4-MBC is a teratogen and influences muscular and neuronal development, which may result in developmental defects.
显示更多 [+] 显示较少 [-]