细化搜索
结果 1-10 的 51
Arbuscular mycorrhizal fungi prevent mercury toxicity in Lactuca sativa (L.) seed germination 全文
2022
Escobar-Vargas, Sebastián | Vargas Aguirre, Carlos | Rivera Páez, Fredy
Mercury pollution is an issue of global concern. In Colombia, the use of contaminated water for food crop irrigation and artisanal mining contributes to mercury pollution in soil, affecting food production and restoration of disturbed areas. Mycorrhizal fungi are symbionts that provide benefits to plants including resistance to heavy metals, but fungal effects on germination remain to be fully described. This study tested the effect of mercury and mycorrhizal fungi on Lactuca sativa seed germination. A 2x5 completely randomized factorial experiment was developed to assess the effect of five HgCl2 polluted treatments, two mycorrhizal treatments (i.e., with inoculum, without inoculum), and the interaction of both factors on seed germination, seedling root colonization, pH, and final water content. In samples with no mercury pollution, mycorrhizal fungi had an inhibitory effect on seed germination. Likewise, the effect of mercury on seed germination is significantly inhibitory. However, pots inoculated with arbuscular mycorrhizal fungi showed constant germination probabilities, independently of mercury concentration. According to the best model determined for the data, a key step in the mitigation of mercury toxicity in seed germination is to prevent substrate pH changes. The environmental conditions of the experiment contributed to densely activate populated biomass of inoculum, which promoted root invasion from various points. Overall, the presence of mycorrhizal fungi in seedbeds could lead to a reduced number of plant individuals. However, the use of fungal inoculum in polluted environments, highly contributes to plant establishment, which is relevant in further vegetable cultivations growing in soil polluted areas.
显示更多 [+] 显示较少 [-]Exogenous application of signaling molecules to enhance the resistance of legume-rhizobium symbiosis in Pb/Cd-contaminated soils 全文
2020
Fang, Linchuan | Ju, Wenliang | Yang, Congli | Jin, Xiaolian | Liu, Dongdong | Li, Mengdi | Yu, Jialuo | Zhao, Wei | Zhang, Chao
Being signaling molecules, nitric oxide (NO) and hydrogen sulfide (H₂S) can mediate a wide range of physiological processes caused by plant metal toxicity. Moreover, legume-rhizobium symbiosis has gained increasing attention in mitigating heavy metal stress. However, systematic regulatory mechanisms used for the exogenous application of signaling molecules to alter the resistance of legume-rhizobium symbiosis under metal stress are currently unknown. In this study, we examined the exogenous effects of sodium nitroprusside (SNP) as an NO donor additive and sodium hydrosulfide (NaHS) as a H₂S donor additive on the phytotoxicity and soil quality of alfalfa (Medicago sativa)-rhizobium symbiosis in lead/cadmium (Pb/Cd)-contaminated soils. Results showed that rhizobia inoculation markedly promoted alfalfa growth by increasing chlorophyll content, fresh weight, and plant height and biomass. Compared to the inoculated rhizobia treatment alone, the addition of NO and H₂S significantly reduced the bioaccumulation of Pb and Cd in alfalfa-rhizobium symbiosis, respectively, thus avoiding the phytotoxicity caused by the excessive presence of metals. The addition of signaling molecules also alleviated metal-induced phytotoxicity by increasing antioxidant enzyme activity and inhibiting the level of lipid peroxidation and reactive oxygen species (ROS) in legume-rhizobium symbiosis. Also, signaling molecules improved soil nutrient cycling, increased soil enzyme activities, and promoted rhizosphere bacterial community diversity. Both partial least squares path modeling (PLS-PM) and variation partitioning analysis (VPA) identified that using signaling molecules can improve plant growth by regulating major controlling variables (i.e., soil enzymes, soil nutrients, and microbial diversity/plant oxidative damage) in legume-rhizobium symbiosis. This study offers integrated insight that confirms that the exogenous application of signaling molecules can enhance the resistance of legume-rhizobium symbiosis under metal toxicity by regulating the biochemical response of the plant-soil system, thereby minimizing potential health risks.
显示更多 [+] 显示较少 [-]Arbuscular mycorrhizal wheat inoculation promotes alkane and polycyclic aromatic hydrocarbon biodegradation: Microcosm experiment on aged-contaminated soil 全文
2016
Ingrid, Lenoir | Lounès-Hadj Sahraoui, Anissa | Frédéric, Laruelle | Yolande, Dalpé | Joël, Fontaine
Very few studies reported the potential of arbuscular mycorrhizal symbiosis to dissipate hydrocarbons in aged polluted soils. The present work aims to study the efficiency of arbuscular mycorrhizal colonized wheat plants in the dissipation of alkanes and polycyclic aromatic hydrocarbons (PAHs). Our results demonstrated that the inoculation of wheat with Rhizophagus irregularis allowed a better dissipation of PAHs and alkanes after 16 weeks of culture by comparison to non-inoculated condition. These dissipations observed in the inoculated soil resulted from several processes: (i) a light adsorption on roots (0.5% for PAHs), (ii) a bioaccumulation in roots (5.7% for PAHs and 6.6% for alkanes), (iii) a transfer in shoots (0.4 for PAHs and 0.5% for alkanes) and mainly a biodegradation. Whereas PAHs and alkanes degradation rates were respectively estimated to 12 and 47% with non-inoculated wheat, their degradation rates reached 18 and 48% with inoculated wheat. The mycorrhizal inoculation induced an increase of Gram-positive and Gram-negative bacteria by 56 and 37% compared to the non-inoculated wheat. Moreover, an increase of peroxidase activity was assessed in mycorrhizal roots. Taken together, our findings suggested that mycorrhization led to a better hydrocarbon biodegradation in the aged-contaminated soil thanks to a stimulation of telluric bacteria and hydrocarbon metabolization in mycorrhizal roots.
显示更多 [+] 显示较少 [-]Effects of silver sulfide nanomaterials on mycorrhizal colonization of tomato plants and soil microbial communities in biosolid-amended soil 全文
2015
Judy, Jonathan D. | Kirby, Jason K. | Creamer, Courtney | McLaughlin, Mike J. | Fiebiger, Cathy | Wright, Claire | Cavagnaro, Timothy R. | Bertsch, Paul M.
We investigated effects of Ag2S engineered nanomaterials (ENMs), polyvinylpyrrolidone (PVP) coated Ag ENMs (PVP-Ag), and Ag+ on arbuscular mycorrhizal fungi (AMF), their colonization of tomato (Solanum lycopersicum), and overall microbial community structure in biosolids-amended soil. Concentration-dependent uptake was measured in all treatments. Plants exposed to 100 mg kg−1 PVP-Ag ENMs and 100 mg kg−1 Ag+ exhibited reduced biomass and greatly reduced mycorrhizal colonization. Bacteria, actinomycetes and fungi were inhibited by all treatment classes, with the largest reductions measured in 100 mg kg−1 PVP-Ag ENMs and 100 mg kg−1 Ag+. Overall, Ag2S ENMs were less toxic to plants, less disruptive to plant-mycorrhizal symbiosis, and less inhibitory to the soil microbial community than PVP-Ag ENMs or Ag+. However, significant effects were observed at 1 mg kg−1 Ag2S ENMs, suggesting that the potential exists for microbial communities and the ecosystem services they provide to be disrupted by environmentally relevant concentrations of Ag2S ENMs.
显示更多 [+] 显示较少 [-]Isolated and combined effects of thermal stress and copper exposure on the trophic behavior and oxidative status of the reef-building coral Mussismilia harttii 全文
2021
da Silva Fonseca, Juliana | Mies, Miguel | Paranhos, Alana | Taniguchi, Satie | Güth, Arthur Z. | Bícego, Márcia C. | Marques, Joseane Aparecida | Fernandes de Barros Marangoni, Laura | Bianchini, Adalto
Global warming and local disturbances such as pollution cause several impacts on coral reefs. Among them is the breakdown of the symbiosis between host corals and photosynthetic symbionts, which is often a consequence of oxidative stress. Therefore, we investigated if the combined effects of thermal stress and copper (Cu) exposure change the trophic behavior and oxidative status of the reef-building coral Mussismilia harttii. Coral fragments were exposed in a mesocosm system to three temperatures (25.0, 26.6 and 27.3 °C) and three Cu concentrations (2.9, 5.4 and 8.6 μg L⁻¹). Samples were collected after 4 and 12 days of exposure. We then (i) performed fatty acid analysis by gas chromatography-mass spectrometry to quantify changes in stearidonic acid and docosapentaenoic acid (autotrophy markers) and cis-gondoic acid (heterotrophy marker), and (ii) assessed the oxidative status of both host and symbiont through analyses of lipid peroxidation (LPO) and total antioxidant capacity (TAC). Our findings show that trophic behavior was predominantly autotrophic and remained unchanged under individual and combined stressors for both 4- and 12-day experiments; for the latter, however, there was an increase in the heterotrophy marker. Results also show that 4 days was not enough to trigger changes in LPO or TAC for both coral and symbiont. However, the 12-day experiment showed a reduction in symbiont LPO associated with thermal stress alone, and the combination of stressors increased their TAC. For the coral, the isolated effects of increase in Cu and temperature led to an increase in LPO. The effects of combined stressors on trophic behavior and oxidative status were not much different than those from the isolated effects of each stressor. These findings highlight that host and symbionts respond differently to stress and are relevant as they show the physiological response of individual holobiont compartments to both global and local stressors.
显示更多 [+] 显示较少 [-]Seasonal dynamics of the bacterial communities associated with cyanobacterial blooms in the Han River 全文
2020
Kim, Minkyung | Lee, Jaebok | Yang, Dongwoo | Park, Hye Yoon | Park, Woojun
DNA-based analyses of bacterial communities were performed to identify the bacteria co-occurring with cyanobacterial blooms in samples collected at a single site over 2 years. Microcystis aeruginosa was the most predominant species (81% in 2018, and 94% in 2019) within the phylum Cyanobacteria, and microcystins were detected during all cyanobacterial blooms. The stereo microscope and scanning electron microscope observations showed bacterial associations on and around the aggregated M. aeruginosa cells. Culture-independent analyses of filtered bacterial communities showed that the Flavobacterium species in phylum Bacteroidetes (19%) was dominant in the cyanobacterial phycosphere, followed by the Limnohabitans species in Betaproteobacteria (11%). Using principal component analysis, major bacterial genus, including Microcystis and Flavobacterium species, were clustered during cyanobacterial blooms in both years. To identify key bacterial species that develop long-term symbiosis with M. aeruginosa, another culture-independent analysis was performed after the environmental sample had been serially subcultured for 1 year. Interestingly, Brevundimonas (14%) was the most dominant species, followed by Porphyrobacter (7%) and Rhodobacter (3.5%) within the Alphaproteobacteria. Screening of 100 colonies from cyanobacterial bloom samples revealed that the majority of culturable bacteria belonged to Gammaproteobacteria (28%) and Betaproteobacteria (57%), including Pseudomonas, Curvibacter, and Paucibacter species. Several isolates of Brevundimonas, Curvibacter, and Pseudomonas species could promote the growth of axenic M. aeruginosa PCC7806. The sensitivity of M. aeruginosa PCC7806 cells to different environmental conditions was monitored in bacteria-free pristine freshwater, indicating that nitrogen addition promotes the growth of M. aeruginosa.
显示更多 [+] 显示较少 [-]Biomonitoring of perylene in symbiotic reef and non-reef building corals and species-specific responses in the Kharg and Larak coral reefs (Persian Gulf, Iran): Bioaccumulation and source identification 全文
2020
Ranjbar Jafarabadi, Ali | Dashtbozorg, Mehdi | Raudonytė-Svirbutavičienė, Eva | Riyahi Bakhtiari, Alireza
In this study, coral soft tissue, skeleton and zooxanthellae, as well as their ambient sediment and seawater were analyzed for polycyclic aromatic hydrocarbons (PAHs) with a special focus on perylene. Samples were collected from two different environments: the Kharg Island, which is affected by numerous anthropogenic stressors and Larak Island, which is mainly used for recreational and fishing activities and is characterized by dense vegetation. The heaviest loadings of PAHs were observed on Kharg Island, yet higher concentrations of perylene were detected on Larak Island and it was identified as the prevailing compound in this area. Pyrogenic perylene sources were prevailing on Kharg Island, whereas the perylene on Larak Island was determined to be of natural origin. After analyzing the biological samples, higher perylene concentrations were observed in zooxanthellae than in tissue and skeleton. The lowest and the highest perylene loadings were found in the tissue and skeleton of Platygyra daedalea and Porites lutea, respectively. This applies to both reefs. We found that perylene distribution in the corals and their ambient environment follows an irregular pattern, demonstrating remarkable effects from the local inputs. The lipid content in the coral tissue and the location of the coral colony were deduced to be the main factors affecting perylene distribution in corals. On Larak Island, a significant correlation between perylene loadings in sediment and corals was observed. On Kharg Island, a strong interaction between the water column and the corals was detected. The symbiotic relationship between the corals and zooxanthellae might play the most significant role in bioconcentration and bioaccumulation of perylene. Due to the insolubility of PAHs, they could be transferred through a food chain to zooxanthellae and eventually deposited in the coral bodies.
显示更多 [+] 显示较少 [-]Symbiosis between nitrogen-fixing bacteria and Medicago truncatula is not significantly affected by silver and silver sulfide nanomaterials 全文
2016
Judy, Jonathan D. | Kirby, Jason K. | McLaughlin, Mike J. | McNear, David | Bertsch, Paul M.
Silver (Ag) engineered nanomaterials (ENMs) are being released into waste streams and are being discharged, largely as Ag2S aged-ENMs (a-ENMs), into agroecosystems receiving biosolids amendments. Recent research has demonstrated that biosolids containing an environmentally relevant mixture of ZnO, TiO2, and Ag ENMs and their transformation products, including Ag2S a-ENMs, disrupted the symbiosis between nitrogen-fixing bacteria and legumes. However, this study was unable to unequivocally determine which ENM or combination of ENMs and a-ENMs was responsible for the observed inhibition. Here, we examined further the effects of polyvinylpyrollidone (PVP) coated pristine Ag ENMs (PVP-Ag), Ag2S a-ENMs, and soluble Ag (as AgSO4) at 1, 10, and 100 mg Ag kg−1 on the symbiosis between the legume Medicago truncatula and the nitrogen-fixing bacterium, Sinorhizobium melliloti in biosolids-amended soil. Nodulation frequency, nodule function, glutathione reductase production, and biomass were not significantly affected by any of the Ag treatments, even at 100 mg kg−1, a concentration analogous to a worst-case scenario resulting from long-term, repeated biosolids amendments. Our results provide additional evidence that the disruption of the symbiosis between nitrogen-fixing bacteria and legumes in response to a mixture of ENMs in biosolids-amended soil reported previously may not be attributable to Ag ENMs or their transformation end-products. We anticipate these findings will provide clarity to regulators and industry regarding potential unintended consequences to terrestrial ecosystems resulting from of the use of Ag ENMs in consumer products.
显示更多 [+] 显示较少 [-]Highlighting the threat from current and near-future ozone pollution to clover in pasture 全文
2014
Hewitt, D.K.L. | Mills, G. | Hayes, F. | Wilkinson, S. | Davies, W.
Globally, the legume–rhizobia symbiosis, contained within specialised organs called root nodules, is thought to add at least 30 Tg N annually to agricultural land. The growth and functioning of a modern white clover (Trifolium repens cv. Crusader) and red clover (T. pratense cv. Merviot) cultivar were investigated in current and future ozone scenarios in solardomes. Both cultivars developed leaf injury and had significant reductions in root biomass and root nodule number in response to ozone, with Crusader also displaying a reduced size and mass of nodules. In-situ measurements of N-fixation in Crusader by acetylene reduction assay revealed reduced N-fixation rates in a future scenario with an increased background and moderate peaks of ozone. The implications for the sustainability of temperate pasture are discussed.
显示更多 [+] 显示较少 [-]Effect of different arbuscular mycorrhizal fungal isolates on growth and arsenic accumulation in Plantago lanceolata L 全文
2012
Orłowska, Elżbieta | Godzik, Barbara | Turnau, Katarzyna
The role of indigenous and non-indigenous arbuscular mycorrhizal fungi (AMF) on As uptake by Plantago lanceolata L. growing on substrate originating from mine waste rich in As was assessed in a pot experiment. P. lanceolata inoculated with AMF had higher shoot and root biomass and lower concentrations of As in roots than the non-inoculated plants. There were significant differences in As concentration and uptake between different AMF isolates. Inoculation with the indigenous isolate resulted in increased transfer of As from roots to shoots; AMF from non-polluted area apparently restricted plants from absorbing As to the tissue; and plants inoculated with an AMF isolate from Zn–Pb waste showed strong As retainment within the roots. Staining with dithizone indicated that AMF might be actively involved in As accumulation. The mycorrhizal colonization affected also the concentration of Cd and Zn in roots and Pb concentration, both in shoots and roots.
显示更多 [+] 显示较少 [-]