细化搜索
结果 1-9 的 9
Neuromuscular, retinal, and reproductive impact of low-dose polystyrene microplastics on Drosophila
2022
Liu, Hsin-Ping | Cheng, Jack | Chen, Mei-Ying | Chuang, Tsai-Ni | Dong, Jhou-Ciang | Liu, Chuan-Hsiu | Lin, Wei-Yong
Facing the challenge of global microplastics (MPs) pollution, full characterization of MPs biohazards is urgent. Recent intensive studies revealed that the toxicity depends on the material, size, and exposure concentration of MP. To better elucidate MPs biohazards, we investigated the impact of polystyrene-MPs of size 0.1 μm at a low dose of 50 μg/L on the neuromuscular, retinal, and reproductive phenotypes of fruit fly model, by voltage-clamped electrophysiology, electroretinogram, and reproductive assay, respectively. We found that MPs decreased the frequency of spontaneous junction currents of synapse and altered the receptor potential amplitude of the retina. Furthermore, MPs lowered the rate of embryo-laying of fruit flies. The differential gene expression of ligand-receptor interaction, endocytosis, phototransduction, and Toll/Imd signaling pathways might underlie these MPs-induced phenotypes. These findings call for further investigation on the potential biohazards of low-dose MPs.
显示更多 [+] 显示较少 [-]PCB52 exposure alters the neurotransmission ligand-receptors in male offspring and contributes to sex-specific neurodevelopmental toxicity
2020
Zhao, Dong | Wang, Qi | Zhou, Wen-Tao | Wang, Li-Bin | Yu, Hao | Zhang, Kai-Kai | Chen, Li-Jian | Xie, Xiao-Li
Polychlorinated biphenyls (PCBs) in the air are predominantly the less chlorinated congeners. Non-dioxin-like (NDL) low-chlorinated PCBs are more neurotoxic, and cause neurodevelopmental and neurobehavioral alterations in humans. However, the underlying mechanisms for this neurodevelopmental toxicity remain unknown. In the present study, Wistar rats were treated by gavage with PCB52 (1 mg/kg body weight) or corn oil from gestational day 7 to postnatal day 21. Both the body lengths and weights of the suckling rats at birth were significantly decreased by PCB52 treatment, suggesting developmental toxicity. Although no obvious histopathological changes were observed in the brain, using RNA-sequencing, 208 differentially expressed genes (DEGs) were identified in the striatum of PCB52-treated male offspring, while just 13 DEGs were identified in female offspring, suggesting sex-specific effects. Furthermore, using Gene Ontology enrichment analysis, neurodevelopmental processes, neurobehavioral alterations, and neurotransmission changes were enriched from the 208 DEGs in male offspring. Similarly, using Kyoto Encyclopedia of Genes and Genomes enrichment analysis, neuroactive ligand receptor interactions and multiple synapse pathways were enriched in male offspring, implying dysfunction of the neurotransmission system. Reductions in the protein expressions of these ligand receptors were also identified in the striatum, cerebral cortex, and hippocampus using western blotting methods. Taken together, our findings indicate that PCB52 exposure during gestation and lactation results in the abnormal expression of neurotransmission ligand-receptors in male offspring with a sex bias, and that this may contribute to neurodevelopmental toxicity.
显示更多 [+] 显示较少 [-]DEHP toxicity on vision, neuromuscular junction, and courtship behaviors of Drosophila
2018
Chen, Mei-Ying | Liu, Hsin-Ping | Liu, Chuan-Hsiu | Cheng, Jack | Chang, Meng-Shiun | Chiang, Su-Yin | Liao, Wing-Ping | Lin, Wei-Yong
Bis(2-ethylhexyl) phthalate (DEHP) is the most common plasticizer. Previous studies have shown DEHP treatment accelerates neurological degeneration, suggesting that DEHP may impact retinal sensitivity to light, neurotransmission, and copulation behaviors. Although its neurotoxicity and antifertility properties have been studied, whether DEHP exposure disrupts vision and how DEHP influences neuromuscular junction (NMJ) have not been reported yet. Moreover, the impact of DEHP on insect courtship behavior is still elusive. Fruit flies (Drosophila melanogaster) were treated with series concentrations of DEHP and observed for lifespan, motor function, electroretinogram (ERG), electrophysiology of neuromuscular junction (NMJ), courtship behaviors, and relevant gene expression. Our results confirmed the DEHP toxicity on lifespan and capacity of motor function and updated its effect on copulation behaviors. Additionally, we report for the first time that DEHP exposure may harm vision by affecting the synaptic signaling between the photoreceptor and the laminar neurons. Further, DEHP treatment altered both spontaneous and evoked neurotransmission properties. Noteworthy, the effect of DEHP exposure on the copulation behavior is sex-dependent, and we proposed potential mechanisms for future investigation.
显示更多 [+] 显示较少 [-]Application of transcriptome analysis to understand the adverse effects of hydrogen peroxide exposure on brain function in common carp (Cyprinus carpio)
2021
Jia, Rui | Du, Jinliang | Cao, Liping | Feng, Wenrong | He, Qin | Xu, Pao | Yin, Guojun
Hydrogen peroxide (H₂O₂), as a common disinfectant, has been extensively used in aquaculture. The toxicity of high ambient H₂O₂ for gills and liver of fish has received attention from many researchers. However, whether H₂O₂ exposure induced brain injury and neurotoxicity has not been reported in fish. Therefore, this study aimed to explore the potential mechanism of H₂O₂ toxicity in brain of common carp via transcriptome analysis and biochemical parameter detection. The fish were exposed to 0 (control) and 1 mM of H₂O₂ for 1 h per day lasting 14 days. The results showed that H₂O₂ exposure caused oxidative damage in brain evidenced by decreased glutathione (GSH), total antioxidant capacity (T-AOC) and nicotinamide adenine dinucleotide (NAD⁺) levels, and increased formation of malondialdehyde (MDA) and 8-hydroxy-2′-deoxyguanosine (8-OHdG). Meanwhile, H₂O₂ exposure reduced 5-hydroxytryptamine (5-HT) level, and down-regulated tryptophan hydroxylase 1 (tph1a), tph2, 5-hydroxytryptamine receptor 1A-beta (htr1ab) and htr2b expression in brain. Transcriptome analysis showed that H₂O₂ exposure up-regulated 604 genes and down-regulated 1209 genes in brain. Go enrichment displayed that the differently expressed genes (DEGs) were enriched mainly in cellular process, single-organism process, metabolic process, and biological regulation in the biological process category. Further, KEGG enrichment indicated that H₂O₂ exposure led to dysregulation of neurotransmitter signals including depression of glutamatergic synapse, GABAergic synapse and endocannabinoid signaling. Also, we found the alteration of three key pathways including calcium, cAMP and HIF-1 in brain after H₂O₂ exposure. In conclusion, our data indicated that H₂O₂ exposure induced oxidative damage and neurotoxicity, possibly related to dysregulation of neurotransmitters and calcium, cAMP and HIF-1 signaling pathways, which may adversely affect learning, memory and social responses of common carp. This study provided novel insight into biological effects and underlying mechanism of H₂O₂ toxicity in aquatic animal, and contributed to proper application of H₂O₂ in aquaculture.
显示更多 [+] 显示较少 [-]In utero exposure to fine particulate matter results in an altered neuroimmune phenotype in adult mice
2018
Kulas, Joshua A. | Hettwer, Jordan V. | Sohrabi, Mona | Melvin, Justine E. | Manocha, Gunjan D. | Puig, Kendra L. | Gorr, Matthew W. | Tanwar, Vineeta | McDonald, Michael P. | Wold, Loren E. | Combs, Colin K.
Environmental exposure to air pollution has been linked to a number of health problems including organ rejection, lung damage and inflammation. While the deleterious effects of air pollution in adult animals are well documented, the long-term consequences of particulate matter (PM) exposure during animal development are uncertain. In this study we tested the hypothesis that environmental exposure to PM 2.5 μm in diameter in utero promotes long term inflammation and neurodegeneration. We evaluated the behavior of PM exposed animals using several tests and observed deficits in spatial memory without robust changes in anxiety-like behavior. We then examined how this affects the brains of adult animals by examining proteins implicated in neurodegeneration, synapse formation and inflammation by western blot, ELISA and immunohistochemistry. These tests revealed significantly increased levels of COX2 protein in PM2.5 exposed animal brains in addition to changes in synaptophysin and Arg1 proteins. Exposure to PM2.5 also increased the immunoreactivity for GFAP, a marker of activated astrocytes. Cytokine concentrations in the brain and spleen were also altered by PM2.5 exposure. These findings indicate that in utero exposure to particulate matter has long term consequences which may affect the development of both the brain and the immune system in addition to promoting inflammatory change in adult animals.
显示更多 [+] 显示较少 [-]Triclosan affects axon formation in the neural development stages of zebrafish embryos (Danio rerio)
2018
Kim, Jin | Oh, Hanseul | Ryu, Bokyeong | Kim, Ukjin | Lee, Ji-min | Jung, Cho-Rok | Kim, C-yoon | Park, Jae-Hak
Triclosan (TCS) is an organic compound with a wide range of antibiotic activity and has been widely used in items ranging from hygiene products to cosmetics; however, recent studies suggest that it has several adverse effects. In particular, TCS can be passed to both fetus and infants, and while some evidence suggests in vitro neurotoxicity, there are currently few studies concerning the mechanisms of TCS-induced developmental neurotoxicity. Therefore, this study aimed to clarify the effect of TCS on neural development using zebrafish models, by analyzing the morphological changes, the alterations observed in fluorescence using HuC-GFP and Olig2-dsRED transgenic zebrafish models, and neurodevelopmental gene expression. TCS exposure decreased the body length, head size, and eye size in a concentration-dependent manner in zebrafish embryos. It increased apoptosis in the central nervous system (CNS) and particularly affected the structure of the CNS, resulting in decreased synaptic density and shortened axon length. In addition, it significantly up-regulated the expression of genes related to axon extension and synapse formation such as α1-Tubulin and Gap43, while decreasing Gfap and Mbp related to axon guidance, myelination and maintenance. Collectively, these changes indicate that exposure to TCS during neurodevelopment, especially during axonogenesis, is toxic. This is the first study to demonstrate the toxicity of TCS during neurogenesis, and suggests a possible mechanism underlying the neurotoxic effects of TCS in developing vertebrates.
显示更多 [+] 显示较少 [-]Astragaloside protects rat brain from microwave-induced functional injuries via restoring acetylcholine and normalizing electroencephalogram
2020
Zhao, Li | Sun, Yunbo | Yu, Chao | Chen, Junjun | Xu, Xinping | Zhang, Xueyan | Wang, Hui | Zhang, Jing | Wang, Haoyu | Dong, Ji | Yao, Binwei | Zhou, Hongmei | Liu, Shuchen | Peng, Ruiyun
Studies from our group and others have reported that 30 mW/cm² microwave could damage the structures of rat hippocampus, as well as impair the neuronal functions. The neuroprotective effects of astragaloside, purified from Astragalus membranaceus, have been demonstrated in animal models of neurodegenerative diseases. In this study, we found that 30 mW/cm² microwave impaired spatial learning and memory ability in rats, while astragaloside could significantly alleviate the injuries. The pathological analysis also showed that astragaloside protected neurons from microwave-induced damages, such as mitochondrial swelling and cavitation, rough endoplasmic reticulum swelling and dilation, synaptic gap disappearing, and vesicle aggregation. Moreover, microwave-induced structural damage of synapse resulted in downregulation of acetylcholine, an important neurotransmitter for information transmission, while astragaloside could protect the structure of synapse, as well as restore the acetylcholine level in rat hippocampus. Furthermore, astragaloside also accelerated the recovery of brain electroencephalogram (EEG) after microwave exposure, indicating that astragaloside could promote the normalization of neuronal functions. In conclusion, astragaloside protected the morphological structures and restored acetylcholine level in rat hippocampus, which could improve brain functions via normalizing brain EEG. Therefore, astragaloside might be a promising candidate to treat microwave-induced injuries of central nervous system (CNS).
显示更多 [+] 显示较少 [-]Aberrant neurotransmissional mRNAs in cerebral ganglions of rotenone-exposed Lumbricus terrestris exhibiting motor dysfunction and altered cognitive behavior
2019
Subaraja, Mamangam | Janardhanam Vanisree, Arambakkam
Rotenone (ROT) was shown to affect cerebral ganglions (CGs) of Lumbricus terrestris as a pioneering observation in our earlier investigation. Though ROT is a well-known neurotoxin causing neurodegeneration (ND), the precipitation of movement dysfunction remains largely unknown. We have designed the current study to analyze motor abnormalities in worms by exposing them to different concentrations (0.0–0.4 ppm) of ROT for 7 days. GABA, cholinergic receptor, serotonin transporter (SERT), acetylcholine esterase (AchE), and dopamine–β-hydroxylase that are well known for their involvement in neuromuscular junctions were investigated by qRT-PCR. Further, neuronal mitochondrial genes (cytochrome C oxidase-2, NADH deydrogenase-1, cytochrome-b) and actin-1 that are essential for regeneration and calreticulin (phagocytosis) were investigated. The levels of neurotransmitters, lipids, ATPase, neuronal behavior analyses, and fluorescence analysis (lipid droplets) were performed in CGs which showed significant variations at 0.3 ppm. Ultrastructural changes in lipid droplet and neuromelatonin were prominent in 0.3 ppm. Dose-dependent effect of ROT on behavior alteration and expression of m-RNAs studied suggested that at 0.3 ppm, it could deteriorate motor and cognitive functions. We predict that perhaps, by virtue of its effect on cerebral ganglionic genes and their neurotransmitting potential, ROT may cause morbidities that resemble features characteristic of hemiparkinsonic degeneration.
显示更多 [+] 显示较少 [-]Erythrocyte acetylcholinesterase as biomarker of pesticide exposure: new and forgotten insights
2018
Assis, Caio R. D. | Linhares, Amanda G. | Cabrera, Mariana P. | Oliveira, Vagne M. | Silva, Kaline C. C. | Marcuschi, Marina | Maciel Carvalho, Elba V. M. | Bezerra, Ranilson S. | Carvalho, Luiz B. Jr
Acetylcholinesterase (AChE) acts on the hydrolysis of acetylcholine, rapidly removing this neurotransmitter at cholinergic synapses and neuromuscular junctions as well as in neuronal growth and differentiation, modulation of cell adhesion (“electrotactins”) and aryl-acylamidase activity (AAA). This enzyme is also found in erythrocyte, as 160 kDa dimer that anchors to the plasma membrane via glycophosphatidylinositol. The function of this enzyme in erythrocytes has not yet been elucidated; however, it is suspected to participate in cell-to-cell interactions. Here, a review on erythrocyte AChE characteristics and use as biomarker for organophosphorus and carbamate insecticides is presented since it is the first specific target/barrier of the action of these pesticides, besides plasma butyrylcholinesterase (BChE). However, some past and current methods have disadvantages: (a) not discriminating the activities of AChE and BChE; (b) low accuracy due to interference of hemoglobin in whole blood samples. On the other hand, extraction methods of hemoglobin-free erythrocyte AChE allows: (a) the freezing and transporting of samples; (b) samples free of colorimetric interference; (c) data from only erythrocyte AChE activity; (d) erythrocyte AChE specific activity presents higher correlation with the central nervous system AChE than other peripheral ChEs; (e) slow spontaneous regeneration against anti-ChEs agents of AChE in comparison to BChE, thus increasing the chances of detecting such compounds following longer interval after exposure. As monitoring perspectives, hemoglobin-free methodologies may be promising alternatives to assess the degree of exposure since they are not influenced by this interfering agent.
显示更多 [+] 显示较少 [-]