细化搜索
结果 1-10 的 15
Contaminants in Atlantic walruses in Svalbard Part 2: Relationships with endocrine and immune systems
2019
Routti, Heli | Diot, Béatrice | Panti, Cristina | Duale, Nur | Fossi, Maria Cristina | Harju, Mikael | Kovacs, Kit M. | Lydersen, Christian | Scotter, Sophie E. | Villanger, Gro D. | Bourgeon, Sophie
Marine mammals in the Barents Sea region have among the highest levels of contaminants recorded in the Arctic and the Atlantic walrus (Odobenus rosmarus rosmarus) is one of the most contaminated species within this region. We therefore investigated the relationships bewteen blubber concentrations of lipophilic persistent organic pollutants (POPs) and plasma concentrations of perfluoroalkyl substances (PFASs) and markers of endocrine and immune functions in adult male Atlantic walruses (n = 38) from Svalbard, Norway. To do so, we assessed plasma concentrations of five forms of thyroid hormones and transcript levels of genes related to the endocrine and immune systems as endpoints; transcript levels of seven genes in blubber and 23 genes in blood cells were studied. Results indicated that plasma total thyroxine (TT4) concentrations and ratio of TT4 and reverse triiodothyronine decreased with increasing blubber concentrations of lipophilic POPs. Blood cell transcript levels of genes involved in the function of T and B cells (FC like receptors 2 and 5, cytotoxic T-lymphocyte associated protein 4 and protein tyrosine phosphatase non-receptor type 22) were increased with plasma PFAS concentrations. These results suggest that changes in thyroid and immune systems in adult male walruses are linked to current levels of contaminant exposure.
显示更多 [+] 显示较少 [-]Aqueous and organic extract of PM2.5 collected in different seasons and cities of Japan differently affect respiratory and immune systems
2018
Chowdhury, Pratiti Home | Okano, Hitoshi | Honda, Akiko | Kudou, Hitomi | Kitamura, Gaku | Ito, Sho | Ueda, Kayo | Takano, Hirohisa
Particulate matter with diameters <2.5 μm (i.e., PM₂.₅) has multiple natural and anthropological sources. The association between PM₂.₅ and the exacerbation of respiratory allergy and asthma has been well studied, but the components of PM₂.₅ that are responsible for allergies have not yet been determined. Here, we elucidated the effects of aqueous and organic extract of PM₂.₅ collected during four seasons in November 2014–December 2015 in two cities (Kawasaki, an industrial area and Fukuoka, an urban area affected by transboundary pollution matter) of Japan on respiratory health. Ambient PM₂.₅ was collected by high-volume air samplers and extracted into water soluble and lipid soluble components. Human airway epithelial cells, murine bone marrow-derived antigen-presenting cells (APC) and splenocytes were exposed to PM₂.₅ extracts. We measured the cell viability and release of interleukin (IL)-6 and IL-8 from airway epithelial cells, the DEC205 and CD86 expressions on APCs and cell proliferation, and TCR and CD19 expression on splenocytes. The water-soluble or aqueous extracts, especially those from Kawasaki in fall, had a greater cytotoxic effect than the lipid-soluble or organic extracts in airway epithelial cells, but they caused almost no pro-inflammatory response. Extract of fall, especially the aqueous extract from Fukuoka, increased the DEC205 and CD86 expressions on APC. Moreover, aqueous extracts of fall, summer, and spring from Fukuoka significantly increased proliferation of splenocytes. Organic extract of spring and summer from Kawasaki significantly elevated the TCR expression, and organic extract of summer from Kawasaki decreased the CD19 expression. These results suggest that PM₂.₅ extract samples are responsible for cytotoxicity in airway epithelial cells and for activating APCs and T-cells, which can contribute to the exacerbation of respiratory diseases such as asthma. These effects can differ by PM₂.₅ components, collection areas and seasons.
显示更多 [+] 显示较少 [-]Di-(2-ethylhexyl) phthalate enhances melanoma tumor growth via differential effect on M1-and M2-polarized macrophages in mouse model
2018
Yi, Chae-uk | Park, Sojin | Han, Hae-Kyoung | Gye, Myung Chan | Moon, Eun-Yi
Phthalates are widely used as plasticizers that influence sexual and reproductive development. Here, we investigated whether di-(2-ethylhexyl) phthalate (DEHP) affects macrophage polarization that are associated with tumor initiation and progression. No changes were observed in LPS- or ConA-stimulated in vitro spleen B or T cell proliferation for 48 h, respectively. In contrast, macrophage functions were inhibited in response to DEHP for 12 h as judged by LPS-induced H₂O₂ and NO production and zymosan A-mediated phagocytosis. When six weeks old male mice were pre-exposed to 4.0 mg/kg DEHP for 21 days before the injection of B16F10 melanoma cells and post-exposed to 4.0 mg/kg DEHP for 7 days, tumor nodule formation and the changes in tumor volume were higher than those in control group. Furthermore, when male mice were intraperitoneally pretreated with DEHP for 3 or 4 weeks and peritoneal exudate cells (PECs) or bone marrow-derived macrophages (BMDMs) were incubated with lipopolysaccharide (LPS), the expression of COX-2, TNF-α, and IL-6 was reduced in DEHP-pretreated cells as compared with that in LPS-stimulated control cells. While the production of nitric oxide (NO) for 18 h was reduced by LPS-stimulated PECs and M1-type BMDMs, IL-4 expression was enhanced in LPS-stimulated BMDMs. When BMDMs were incubated with IL-4 for 30 h, arginase 1 for M2-type macrophages was increased in transcriptional and translational level. Data implicate that macrophages were differentially polarized by DEHP treatment, which reduced M1-polarzation but enhanced M2-polarization. Taken together, these data demonstrate that DEHP could affect in vivo immune responses of macrophages, leading to the suppression of their tumor-preventing ability. This suggests that individuals at high risk for tumor incidence should avoid long-term exposure to various kind of phthalate including DEHP.
显示更多 [+] 显示较少 [-]Immunotoxic mechanisms of cigarette smoke and heat-not-burn tobacco vapor on Jurkat T cell functions
2021
Scharf, Pablo | da Rocha, Gustavo H.O. | Sandri, Silvana | Heluany, Cintia S. | Pedreira Filho, Walter R. | Farsky, Sandra H.P.
Cigarette smoke (CS) affects immune functions, leading to severe outcomes in smokers. Robust evidence addresses the immunotoxic effects of combustible tobacco products. As heat-not-burn tobacco products (HNBT) vaporize lower levels of combustible products, we here compared the effects of cigarette smoke (CS) and HNBT vapor on Jurkat T cells. Cells were exposed to air, conventional cigarettes or heatsticks of HNBT for 30 min and were stimulated or not with phorbol myristate acetate (PMA). Cell viability, proliferation, reactive oxygen species (ROS) production, 8-OHdG, MAP-kinases and nuclear factor κB (NFκB) activation and metallothionein expression (MTs) were assessed by flow cytometry; nitric oxide (NO) and cytokine levels were measured by Griess reaction and ELISA, respectively. Levels of metals in the exposure chambers were quantified by inductively coupled plasma mass spectrometry. MT expressions were quantified by immunohistochemistry in the lungs and liver of C57Bl/6 mice exposed to CS, HNBT or air (1 h, twice a day for five days: via inhalation). While both CS and HBNT exposures increased cell death, CS led to a higher number of necrotic cells, increased the production of ROS, NO, inflammatory cytokines and MTs when compared to HNBT-exposed cells, and led to a higher expression of MTs in mice. CS released higher amounts of metals. CS and HNBT exposures decreased PMA-induced interleukin-2 (IL-2) secretion and impaired Jurkat proliferation, effects also seen in cells exposed to nicotine. Although HNBT vapor does not activate T cells as CS does, exposure to both HNBT and CS suppressed proliferation and IL-2 release, a pivotal cytokine involved with T cell proliferation and tolerance, and this effect may be related to nicotine content in both products.
显示更多 [+] 显示较少 [-]Effects of PM2.5 exposure on the Notch signaling pathway and immune imbalance in chronic obstructive pulmonary disease
2017
Gu, Xing-yu | Chu, Xu | Zeng, Xiao-Li | Bao, Hai-Rong | Liu, Xiao-Ju
Chronic Obstructive Pulmonary Disease (COPD) is associated with T lymphocytes subset (Th1/Th2, Th17/Treg) imbalance. Notch signaling pathway plays a key role in the development of the adaptive immunity. The immune disorder induced by fine particulate matter (PM2.5) is related to COPD. The aim of this study was to investigate the mechanism by which PM2.5 influences the Notch signaling pathway leading to worsening immune disorder and accelerating COPD development. A COPD mouse model was established by cigarette smoke exposure. PM2.5 exposure was performed by aerosol inhalation. γ-secretase inhibitor (GSI) was given using intraperitoneal injection. Splenic T lymphocytes were purified using a density gradient centrifugation method. CD4+ T lymphocyte subsets (Th1/Th2, Th17/Treg) were detected using flow cytometry. mRNA and proteins of Notch1/2/3/4, Hes1/5, and Hey1 were detected using RT-PCR and Western blot. Serum INF-γ, IL-4, IL-17 and IL-10 concentrations were measured using ELISA. The results showed that in COPD mice Th1% and Th17%, Th1/Th2 and Th17/Treg were increased, and the levels of mRNA and protein in Notch1/2/3/4, Hes1/5, and Hey1 and serum INF-γ and IL-17 concentrations were significantly increased, and Th2%, Treg%, and serum IL-4 and IL-10 concentrations were significantly decreased. COPD Mice have Th1- and Th17-mediated immune disorder, and the Notch signaling pathway is in an overactivated state. PM2.5 promotes the overactivation of the Notch signaling pathway and aggravates the immune disorder of COPD. GSI can partially inhibit the activation of the Notch signaling pathway and alleviate the immune disorder under basal state and the immune disorder of COPD caused by PM2.5. This result suggests that PM2.5 is involved in the immune disorder of mice with COPD by affecting the Notch signaling pathway and that PM2.5 aggravates COPD.
显示更多 [+] 显示较少 [-]Systematic multi-omics reveals the overactivation of T cell receptor signaling in immune system following bisphenol A exposure
2022
Park, Yoo-Jin | Rahman, Md. Saidur | Pang, Won-Ki | Ryu, Do-Yeal | Jung, Min-Ji | Amjad, Shehreen | Kim, Jun-Mo | Pang, Myung-Geol
Bisphenol A (BPA) is pervasive in the environment, and exposure to BPA may increase the incidence of noncommunicable diseases like autoimmune diseases and cancer. Although BPA causes immunological problems at the cellular level, no system-level research has been conducted on this. Hence, in this study, we aimed to gain a better understanding of the biological response to BPA exposure and its association with immunological disorders. For that, we explored the transcriptome and the proteomic modifications at the systems and cellular levels following BPA exposure. Our integrated multi-omics data showed the alteration of the T cell receptor (TCR) signaling pathway at both levels. The proportion of enlarged T cells increased with upregulation of CD69, a surface marker of early T cell activation, even though the number of T cells reduced after BPA exposure. Additionally, on BPA exposure, the levels of pLCK and pSRC increased in T cells, while that of pLAT decreased. Following BPA exposure, we investigated cytokine profiles and discovered that chitinase 3 Like 1 and matrix metalloproteinase 9 were enriched in T cells. These results indicated that T cells were hyperactivated by CD69 stimulation, and phosphorylation of SRC accelerated on BPA exposure. Hence, alteration in the TCR signaling pathway during development and differentiation due to BPA exposure could lead to insufficient and hasty activation of TCR signaling in T cells, which could modify cytokine profiles, leading to increased environmental susceptibility to chronic inflammation or diseases, increasing the chance of autoimmune diseases and cancer. This study enhances our understanding of the effects of environmental perturbations on immunosuppression at molecular, cellular, and systematic levels following pubertal BPA exposure, and may help develop better predictive, preventative, and therapeutic techniques.
显示更多 [+] 显示较少 [-]Bisphenol A and its substitutes regulate human B cell survival via Nrf2 expression
2020
Jang, Ju-Won | Yi, Chae-uk | Yoon, Yeo Dae | Kang, Jong-Soon | Moon, Eun-Yi
B cells contribute to produce inflammatory cytokines and antibodies, to present autoantigens, and to interact with T cells, which lead to body defense and disease control. Nuclear factor (erythroid-derived 2)-like 2(Nrf2) is responsible for gene expression of antioxidant enzymes to protect cells from oxidative stress by reactive oxygen species(ROS) production. Bisphenol A(BPA) may not be safe due to the effect on body’s physiological functions. The chemicals that substitute for BPA may still have similar effects in the body. Tritan™ copolyester is a novel plastic form using BPA substitutes, 1,4-cyclohexanedimethanol(CHDM), dimethyl terephthalate(DMT), and 2,2,4,4-tetramethyl-1,3-cyclobutanediol(TMCD). Isosorbide(ISO) was also used as a substitute for TMCD and DMT. Here, we investigated whether B cell viability is influenced by BPA and its substitutes via Nrf2 induction using WiL2-NS human B lymphoblast cells. When cytotoxicity was measured by using assays with MTT, CellTiter-Glo, trypan blue and propidium iodide, cytotoxicity by BPA was higher than that by substitutes. BPA and its substitutes showed significant cytotoxicity and ROS production, which were attenuated by the treatment with N-acetylcysteine(NAC), a ROS scavenger. In addition, BPA treatment enhanced gene expression of antioxidant enzymes, heme oxygenase(HO)-1, catalase, superoxide dismutase(SOD) 1 and 2. As H₂O₂ treatment induced cell death and Nrf2 amount in WiL2-NS cells, BPA treatment increased Nrf2. Cell death by H₂O₂ was increased in doxycycline-inducible Nrf2-knockdown(KD) cells. In Cytotoxicity by the treatment with BPA or its substitutes was also enhanced in Nrf2-KD cells but that was reduced by Nrf2 overexpression compared to control cells. Taken together, these results implicate that B cell cytotoxicity by substitutes should be lower than BPA and Nrf2 can prevent B cells from BPA- or BPA substitutes-induced cytotoxicity via ROS production. Data suggest that the comprehensive studies or evaluation could be necessary to replace BPA in manufacture by other substitutes.
显示更多 [+] 显示较少 [-]Immunomodulation and hormonal disruption without compromised disease resistance in perfluorooctanoic acid (PFOA) exposed Japanese quail
2013
Smits, Judit E.G. | Nain, Sukhbir
This study evaluated the impact of oral perfluorooctanoic acid (PFOA) on Japanese quail at concentrations found in American and Belgian workers at PFOA manufacturing facilities. Three arms of the immune system were tested; T cell, B cell, and innate immunity. After 6 weeks exposure, quail were challenged with E. coli infection to test the ultimate measure of immunotoxicity, disease resistance. The T cell response was lower in the high exposure groups. Antibody mediated, and innate immune responses were not different. Growth rate was higher, whereas thyroid hormone levels were lower in PFOA-exposed birds. Morbidity/mortality from disease challenge was not different among the control and PFOA-exposed groups, and no overt PFOA toxicity was observed pre-disease challenge.Although PFOA at ‘worst case scenario’ levels caused T cell immunosuppression, this did not translate into increased disease susceptibility, demonstrating that immunotoxicity testing must be interpreted with caution since disease resistance is the ultimate concern.
显示更多 [+] 显示较少 [-]DNA strand breaks (comet assay) in blood lymphocytes from wild bottlenose dolphins
2013
Lee, Richard F. | Bulski, Karrie | Adams, Jeffrey D. | Peden-Adams, Margie | Bossart, Gregory D. | King, Lydia | Fair, Patricia A.
The comet assay was carried out on blood lymphocytes from a large number of wild dolphins (71 from Indian River Lagoon, FL, USA; 51 from Charleston Harbor, SC, USA) and provides a baseline study of DNA strand breaks in wild dolphin populations. There were no significant differences in the comet assay (%DNAintail) results between the different age and sex categories. Significant difference in DNA strand breaks were found between Charleston Harbor dolphins (median – 17.4%DNAintail) and Indian River Lagoon dolphins (median – 14.0%DNAintail). A strong correlation found between T-cell proliferation and DNA strand breaks in dolphin lymphocytes suggests that dolphins with a high numbers of DNA strand breaks have a decreased ability to respond to infection. Higher concentrations of genotoxic agents in Charleston Harbor compared with Indian River lagoon may have been one of the causes of higher DNA strand breaks in these dolphins.
显示更多 [+] 显示较少 [-]Absence of selenium protection against methylmercury toxicity in harbour seal leucocytes in vitro
2016
Dāsa, Kr̥shṇā | Dupont, Aurélie | De Pauw-Gillet, Marie- Claire | Debier, Cathy | Siebert, Ursula
Previous studies described high concentrations of mercury (Hg) and selenium (Se) in the blood of harbour seals, Phoca vitulina from the North Sea. In the present study, we evaluated the in vitro potential protective effects of sodium selenite (Na2SeO3) and selenomethionine (SeMet) on cell proliferation of harbour seal lymphocytes exposed to MeHgCl 0.75μM. In vitro exposure of ConA-stimulated T lymphocytes resulted in severe inhibition of DNA synthesis, likely linked to severe loss of mitochondrial membrane potential at 0.75μM. Neither selenite nor SeMet showed a protective effect against MeHg toxicity expressed at the T lymphocyte proliferation level for harbour seals. Selenite and SeMet did not show negative effects regarding lymphocyte proliferation and mitochondrial membrane potential.To conclude, our results clearly demonstrated that MeHg affected in vitro immune cells exposure with no protective effects of selenium at a molar ratio Hg:Se of 1:10 in harbour seals from the North Sea.
显示更多 [+] 显示较少 [-]