细化搜索
结果 1-5 的 5
Effects of tapeworm infection on absorption and excretion of zinc and cadmium by experimental rats
2018
Sloup, Vladislav | Jankovská, Ivana | Száková, Jiřina | Magdálek, Jan | Sloup, Simon | Langrová, Iva
The main objective of this study was to determine how rat tapeworms affect the excretion of zinc and cadmium through rat feces. Male rats (Rattus norvegicus var. alba) were divided into four groups, and the experiment was conducted over a 6-week period. The control groups (00; 0T) were provided with a standard ST-1 rodent mixture and received 10.5 mg of Zn/week. Groups P0 and PT were fed a mixture supplemented with the hyperaccumulating plant Arabidopsis halleri at a dosage of 123 mg Zn/week and 2.46 mg Cd/week. Groups 0T and PT were infected with the rat tapeworm (Hymenolepis diminuta). Fecal samples were collected 24 h post exposure. Zinc and cadmium concentrations in rat feces were analyzed using inductively coupled plasma optical emission spectrometry. Tapeworm presence decreased the amount of metals excreted through the feces of the host throughout the entire experiment, with the exception of 1 week (control group). No statistically significant differences between zinc excretion rates in the control groups (00 and 0T) were detected at any time throughout the experiment. A statistically significant difference between zinc excretion rates (p < 0.05) in the exposed groups (P0 and PT) was detected in 2 of the 6 monitored weeks. Group PT excreted significantly less cadmium (p < 0.01) than group P0 did in three of the 6 weeks. Overall, our results indicate that tapeworms are able to influence the excretion of metals by their host. Tapeworms accumulate metals from intestinal contents. It is not clear whether tapeworms carry out this process before the host tissues absorb the metals from the intestines or the tapeworms accumulate metals excreted from the body of the host back to the intestines. Most likely, it is a combination of both phenomena.
显示更多 [+] 显示较少 [-]How tapeworm infection and consumption of a Cd and Zn hyperaccumulating plant may affect Cu, Fe, and Mn concentrations in an animal—a plant consumer and tapeworm host
2018
Jankovská, Ivana | Sloup, Vladislav | Száková, Jiřina | Magdálek, Jan | Nechybová, Stanislava | Peřinková, Pavla | Langrová, Iva
This study evaluated the effects of a hyperaccumulator plant (Arabidopsis halleri), containing surplus of cadmium (Cd) and zinc (Zn) and being an admixture to the rat feed, on concentrations of copper (Cu), iron (Fe), and manganese (Mn) in the tissues of experimental rats infected/uninfected with the tapeworm (Hymenolepis diminuta). Male Wistar rats were divided into three groups (00, P0, and PT); the P0 and PT animals were fed a standard mixture for rats (ST-1) supplemented with the plant A. halleri at a weekly Zn and Cd dosage of 123 and 1 mg, respectively. Moreover, rats from the group PT were infected with the tapeworm. The group 00 served as control animals fed only ST-1 having no tapeworm infection. Rats were euthanized after 6 weeks, and Cu, Fe, and Mn levels were determined in rat and tapeworm tissues. The results indicated that both the consumption of hyperaccumulator plant and/or presence of tapeworms did have significant effect on Cu, Fe, and Mn concentrations in the host tissues. Concentrations of all the elements were higher in the rat liver and partially kidneys than in the tapeworms, and the concentrations of Cu, Fe, and Mn were affected by the consumption of Cd/Zn hyperaccumulator plants. Particularly, Fe concentrations in all rat tissues were significantly increased by consumption of A. halleri while decreased by the presence of tapeworms. Overall, the consumption of a Cd/Zn hyperaccumulator plant and tapeworm infection cause an imbalance in Cu, Fe, and Mn concentrations in the tissues of a consumer (experimental rats).
显示更多 [+] 显示较少 [-]Green chemical synthesis of gold nanoparticles by using Penicillium aculeatum and their scolicidal activity against hydatid cyst protoscolices of Echinococcus granulosus
2017
Hydatid disease is a helminth infection with various clinical complications caused by the larval stage of the dog tapeworm Echinococcus granulosus. The scolicidal agents have been broadly applied for inactivation of the fertile cysts up to now, but these scolicidal agents have several side effects on patients. Therefore, this study aimed to explore the scolicidal activity of green synthesized gold nanoparticles (AuNPs) utilizing mycelia-free culture filtrate of Penicillium aculeatum against hydatid cyst protoscolices of E. granulosus. The size and morphology of AuNPs were affirmed by UV–visible spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), and dynamic light scattering (DLS) analysis. The Fourier transform infrared (FT-IR) analysis of AuNPs showed the presence of possible functional groups responsible for the bioreduction and capping. The AuNPs were formed relatively uniform with spherical shape and superior monodispersity with the average diameter of 60 nm. Consequently, various concentrations (0.05, 0.1, 0.2, and 0.3 mg/mL) of green synthesized AuNPs and different exposure times (10, 30, 60, and 120 min) were used against hydatid cyst protoscolices. Statistically, the difference between the scolicidal effects of AuNPs were seen extremely significant for all four concentrations and at various exposure times in comparison to the control group (P < 0.0001). The most mean protoscolex elimination ratio was 94% (0.3 mg/mL AuNPs and 120-min exposure time). The current investigation indicated that applying biogenic AuNPs may be considered as a potential scolicidal agent for cystic hydatid disease. However, further studies are required to evaluate the efficacy of AuNPs in vivo.
显示更多 [+] 显示较少 [-]How the tapeworm Hymenolepis diminuta affects zinc and cadmium accumulation in a host fed a hyperaccumulating plant (Arabidopsis halleri)
2016
Jankovská, I. | Sloup, V. | Száková, J. | Langrová, I. | Sloup, S.
The effects of plant-bound zinc (Zn) and cadmium (Cd) on element uptake and their interactions in a parasite-host system were investigated in a model experiment. Male Wistar rats were divided into four groups (C, P, TC and TP). Groups TC and TP were infected with the rat tapeworm Hymenolepis diminuta. Groups C and TC were fed a standard rodent mixture (ST-1) and received 10.5 mg of Zn per week, while groups P and TP were fed a mixture supplemented with the Zn- and Cd-hyperaccumulating plant Arabidopsis halleri at a dosage of 236 mg Zn/week and 3.0 mg Cd/week. Rats were euthanized after 6 weeks, and Cd and Zn levels were determined in rat and tapeworm tissue. The results indicate that tapeworm presence did have an effect on Cd and Zn concentrations in the host tissue; the majority of tissues in infected rats had statistically significant lower Zn and Cd concentrations than did uninfected rats. Tapeworms accumulated more zinc and cadmium than did the majority of host tissues. This important finding confirms the ability of tapeworms to accumulate certain elements (heavy metals) from the host body to their own body tissues. Thus, tapeworms can decrease heavy metal concentrations in host tissues.
显示更多 [+] 显示较少 [-]Heavy metal concentrations in the small intestine of red fox (Vulpes vulpes) with and without Echinococcus multilocularis infection
2015
Brožová, Adela | Jankovská, Ivana | Miholová, Daniela | Scháňková, Štěpánka | Truněčková, Jana | Langrová, Iva | Kudrnáčová, Marie | Vadlejch, Jaroslav
Heavy metal (Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) levels in red fox small intestine samples with or without Echinococcus multilocularis infection were studied. The red foxes were taken from the open countryside of northwest Bohemia (CR). Red foxes with E. multilocularis infection had lower levels of toxic metals (Cd, Pb); cadmium levels in infected foxes (0.0052 mg/kg) were twice as low as in uninfected foxes (0.0106 mg/kg). This was the same case for lead: 0.0288 mg/kg infected red foxes (inf.) and 0.0413 mg/kg uninfected (uninf.). Conversely, red foxes with E. multilocularis infection yielded higher concentrations in comparison to their uninfected counterparts: Cr (0.0087 mg/kg uninf. and 0.0116 mg/kg inf.), Cu (0.2677 mg/kg uninf. and 0.3205 mg/kg inf.), Fe (6.46 mg/kg uninf. and 10.89 mg/kg inf.), Mn (0.1966 mg/kg uninf. and 0.2029 mg/kg inf.), Ni (0.0415 mg/kg uninf. and 0.064 mg/kg inf.) and Zn (16.71 mg/kg uninf. and 20.25 mg/kg inf). This could support the hypothesis that tapeworms are able to absorb toxic heavy metals from the host body into their tissues, as well as to modify other element concentrations in the host body.
显示更多 [+] 显示较少 [-]