细化搜索
结果 1-10 的 293
Photocatalytic Degradation of Benzene and Toluene in Aqueous Medium
2016
Singh, Pardeep | Borthakur, A. | Srivastava, N. | Singh, R. | Tiwary, D. | Mishra, P.K.
The resource intensive human activities (such as mining and extraction of mineral oils for betterment of life and modernization of society) have increased environmental pollution several folds. Products of mining and petrochemical industries are advantageous for the modern society. But waste generated such as BTEX from such industries are carcinogenic, toxic and causes adverse effects on environment and human health. These wastes are classified as hazardous waste which cannot be used further. Pollution of soil-water interface due to the release of hydrocarbons in environment is a major public health concern, and therefore, remediation of these pollutants is needed to reduce risk to human and environment. Various methods such as biological, chemical and physical method are used to degrade these pollutants from wastewater. In the present works photochemical degradation of toluene and benzene in wastewater are studied using activated Carbon−TiO2 composites as catalysts in the presence of UV irradiation in photochemical reactor. Composites are prepared by sol-gel method and further characterized by X-ray diffractometry (XRD), scanning electron microscope (SEM) and Fourier transformed-Infrared spectroscopy (FT-IR). The Photocatalytic efficiencies of the synthesized composites were determined by the mineralization of toluene and benzene under UV irradiation in photochemical reactor.
显示更多 [+] 显示较少 [-]Assessment and control of VOCs emitted from gas stations in Tehran, Iran
2015
Eisaei, Hamid Reza | Ahmadi Dehrashid, Seyed Shaho | Khani, Mohammad Reza | Hashemi, Seyed Mukhtar
In this research, gasoline vapours including Benzene, Toluene, Xylene (BTX) and Total Volatile Organic Compounds (TVOCs) emitted from vent pipes of underground storage tanks (USTs) were measured at six gas stations in Tehran. Thereafter, gas station No. 29 was selected as a pilot station and equipped with a vapour control system. The vapours were measured during the summer of 2013 and winter of 2014 in two states, before and at the time of gasoline discharge from a petrol tanker to the UST. The results reveal that the average of BTX and TVOCs are 161.22, 200.81, 229 and 647.01 ppm, respectively, higher than the World Health Organisation (WHO) guidelines. The average of TVOCs and BTX in the situation in which the control system is inactive at the pilot station, are 259.13, 55.9, 73.03 and 96.88 ppm, respectively. After activating the control system at the pilot station, the VOCs were reduced by 0.01 ppm. Almost 99.99% control was obtained for this system and 87% of the people living around the pilot station were satisfied and no longer had any complaints about the bad odour of VOCs. It can be concluded that gasoline discharge from the petrol tanker to UST, is the main reason behind the overproduction of VOCs in Tehran's gas stations (P<0.001). So, the most important element is to reduce VOCs at Tehran's gas stations by installing a vapour control systems in all the stations and activating the systems at the time of gasoline discharge.
显示更多 [+] 显示较少 [-]Microbiological remediation of waste-oil polluted soils -Ecotoxicological and toxicological considerations.
1994
Rippen G. | Held T. | Ripper P.
A waste-oil contaminated site situated near a river is supposed to be cleaned-up by means of different but complementary methods. On the basis of a research project, target values have been developed in close cooperation between the participant parties for the saturated and the unsaturated soil layers. The clean-up targets are introduced and discussed.
显示更多 [+] 显示较少 [-]A wide range of toxic VOCs measured by dual-sorbent passive sampling with validation by field online measurements
2022
Lee, Yu-Hsun | Wang, Chieh-Heng | Hsu, Pei-Hsuan | Hsieh, Hsin-Cheng | Wang, Jia-Lin
This study modified a passive sampling technique similar to the US EPA Method 325 A/B method but extended to include more toxic volatile organic compounds (VOCs) under varied climate conditions to enhance field applicability. A mixing chamber was built to determine uptake rates (Us) for the target compounds. It was found that the Us of 27 air toxics previously reported in the literature agreed reasonably well with our findings within 18%, thus proving the chamber's integrity. To broaden the compound coverage, both Carbopack X and Carboxen 569 were studied for a suite of toxic VOCs to meet stringent quality control (QC) criteria of correlation coefficients (R-square), method detection limits (MDL), back diffusion (BD), storage stability, as well as a wide range of climate conditions in temperature and humidity. After excluding the species that failed to pass any of the QC criteria, Carbopack X was found to fit 50 air toxics, whereas Carboxen 569 held 37. After excluding the overlapped species, 61 toxic VOCs can be determined with robust Us for a broad range of climate conditions when the two sorbents are used in pairs. A one-week field measurement was conducted to compare with the online thermal desorption gas chromatography-mass spectrometry (TD-GC-MS) with hourly data resolution. The field passive sampling showed comparable results to the means of the online hourly measurements, despite the high variability of selected target compounds, such as toluene from 0.3 ppbv as the 5th percentile to the maximum of about 80 ppbv. Passive sampling clearly demonstrated the ability to smooth out concentration variability and thus the time-averaging strength of toxic VOCs, revealing its ideal role as an exposure monitor over time. The passive sampling method can be more desired than active sampling or online methods when the aim is simply the knowledge of prolonged time-averaged concentrations.
显示更多 [+] 显示较少 [-]Phase-specific stable isotope fractionation effects during combined gas-liquid phase exchange and biodegradation
2022
Khan, Ali M. | Gharasoo, Mehdi | Wick, Lukas Y. | Thullner, Martin
Stable isotope fractionation of toluene under dynamic phase exchange was studied aiming at ascertaining the effects of gas-liquid partitioning and biodegradation of toluene stable isotope composition in liquid-air phase exchange reactors (Laper). The liquid phase consisted of a mixture of aqueous minimal media, a known amount of a mixture of deuterated (toluene-d) and non-deuterated toluene (toluene-h), and bacteria of toluene degrading strain Pseudomonas putida KT2442. During biodegradation experiments, the liquid and air-phase concentrations of both toluene isotopologues were monitored to determine the observable stable isotope fractionation in each phase. The results show a strong fractionation in both phases with apparent enrichment factors beyond −800‰. An offset was observed between enrichment factors in the liquid and the gas phase with gas-phase values showing a stronger fractionation in the gas than in the liquid phase. Numerical simulation and parameter fitting routine was used to challenge hypotheses to explain the unexpected experimental data. The numerical results showed that either a very strong, yet unlikely, fractionation of the phase exchange process or a – so far unreported – direct consumption of gas phase compounds by aqueous phase microorganisms could explain the observed fractionation effects. The observed effect can be of relevance for the analysis of volatile contaminant biodegradation using stable isotope analysis in unsaturated subsurface compartments or other environmental compartment containing a gas and a liquid phase.
显示更多 [+] 显示较少 [-]Alkylation modified pistachio shell-based biochar to promote the adsorption of VOCs in high humidity environment
2022
Cheng, Tangying | Li, Jinjin | Ma, Xiuwei | Zhou, Lei | Wu, Hao | Yang, Linjun
The objective of this work was to evaluate the adsorption capacity of alkylated modified porous biochar prepared by esterification and etherification (PSAC-2) for low concentrate volatile organic compounds (VOCs, toluene and ethyl acetate) in high humidity environment by experiments and theoretical calculations. Results showed that PSAC-2 has a large specific surface area and weak surface polarity, at 80% relative humidity, its capacities for toluene and ethyl acetate adsorption could be maintained at 92% and 87% of the initial capacities (169.9 mg/g and 96.77 mg/g). The adsorption behaviors of toluene, ethyl acetate, and water vapor were studied by adsorption isotherms, and isosteric heat was obtained. The desorption activation energy was obtained by temperature programmed desorption experiment. The outcomes manifested that the PSAC-2 can achieve strong adsorption performance for weakly polar molecules. Through density functional theory (DFT) simulations, owing to the interaction of hydrogen bonds, oxygen-containing groups became a significant factor influencing the adsorption of VOCs in humid environments. These results could provide an important reference for VOCs control in a high humidity environment.
显示更多 [+] 显示较少 [-]Estimation of hazardous concentration of toluene in the terrestrial ecosystem through the species sensitivity distribution approach
2021
Chae, Yooeun | Kim, Lia | Lee, Jieun | Kim, Dokyung | Cui, Rongxue | An, Youn-Joo
Toluene is a highly flammable and commonly used industrial chemical with severe health consequences on humans upon exposure and ingestion. In this study, multispecies bioassays were conducted using a species sensitivity distribution approach to determine acute and chronic hazardous concentrations of toluene in soil. Acute and chronic toluene toxicity tests were conducted with seven soil species from four taxonomic groups. The results from the toxicity tests were used to estimate the acute and chronic HC₅ (hazardous concentration for 5 % of species) of toluene in the terrestrial environment at 58.9 (5.4–639.6) mg kg⁻¹ and 2.2 (0.2–19.8) mg kg⁻¹, respectively. To the best of our knowledge, this is the first study to estimate the hazardous concentration of toluene in soil by conducting a battery of bioassays. These values can be used as references for the environmental risk assessment of chemical accidents involving toluene and estimating its impact on soil to protect the terrestrial environment.
显示更多 [+] 显示较少 [-]Polar organic aerosol tracers in two areas in Beijing-Tianjin-Hebei region: Concentration comparison before and in the sept. Third Parade and sources
2021
Li, Li | Wu, Di | Chang, Xing | Tang, Yi | Hua, Yang | Xu, Qingcheng | Deng, Shihuai | Wang, Shuxiao | Hao, Jiming
A total of 106 24-h PM₂.₅ aerosol samples were collected in an urban area (Shijiazhuang, SJZ) and a suburban area (Liulihe, LLH, Fangshan County, Beijing) in the Beijing-Tianjin-Hebei (BTH) region in 2 periods: the first is from 10 July to 10 August, which is before Sept. Third Parade (Period I); the second is from 20 Aug. to 6 Sept. 2015, which is during Sept. Third Parade (Period II). Polar organic tracers, including isoprene, α-pinene, β-caryophyllene and toluene oxidation products, as well as sugars and carboxylic acids were measured. In Period II, rigorous emission-reduction measures were taken in the BTH region. With the anthropogenic emission being cut down significantly, the average concentrations of isoprene, α-pinene, β-caryophyllene and toluene oxidation products and all carboxylic acids (except tetradecanoic, palmitic, and stearic acids), were lower in Period II than those in Period I in LLH, indicating that the SOA tracers were decreased with precursor emission volumes and yields in the atmosphere. Moreover, sugar compounds were shown with comparable levels during the two periods in LLH, suggesting that no measures were taken to reduce the intensities of the biogenic sources. On the contrary, tetradecanoic, palmitic, and stearic acids were shown with obviously higher concentrations in Period II than those in Period I, demonstrating that cooking fumes increased during Sept. Third Parade period.The positive matrix factorization (PMF) model combining with tracer-based method was applied to explore the sources of secondary organic carbon (SOC). It reveals that the sources of SOC include isoprene, α-pinene, β-caryophyllene and toluene oxidation products, fossil fuel combustion, cooking fumes and regionally transferred aged aerosols. These sources accounted for 11.3%, 9.0%, 15.5%, 10.9%, 29.2%, 2.9%, 21.1% of SOC for SJZ, and 12.7%, 11.2%, 9.7%, 14.4%, 25.3%, 0%, 26.7% of SOC for LLH, during the whole sampling periods respectively.
显示更多 [+] 显示较少 [-]Environmental and health risks of VOCs in the longest inner–city tunnel in Xi’an, Northwest China: Implication of impact from new energy vehicles
2021
Xu, Hongmei | Feng, Rong | Wang, Zexuan | Zhang, Ningning | Zhang, Renjian | He, Kailai | Wang, Qiyuan | Zhang, Qian | Sun, Jian | Zhang, Bin | Shen, Zhenxing | Ho, Steven Hang Sai | Cao, Junji
Traffic source–dominated volatile organic compound (VOC) samples were collected during four time-intervals in a day (Ⅰ: 7:30–10:30, Ⅱ: 11:00–14:00, Ⅲ: 16:30–19:30, and Ⅳ: 20:00–23:00) in a tunnel in summer, 2019, in Xi’an, China. The total measured VOC (TVOC) in periods Ⅰ and Ⅲ (rush hours, 107.2 ± 8.2 parts per billion by volume [ppbv]) was 1.8 times that in periods Ⅱ and Ⅳ (non-rush hours, 58.6 ± 13.8 ppbv), consistent with the variation in vehicle numbers in the tunnel. The considerably elevated ethane and ethylbenzene levels could have been attributed to emissions from compressed natural gas vehicles and the rapid development of methanol-fueled taxis in Xi’an in 2019. The mixing ratios of benzene, toluene, ethylbenzene, and xylenes (BTEX) contributed 9.4%–12.7% to TVOCs, and the contributions were nearly 40% higher in periods Ⅰ and Ⅲ than in Ⅱ and Ⅳ, indicating that BTEX levels were strongly affected by vehicle emissions. The indicators of motor vehicle emission, namely ethylene, propylene, toluene, m/p-xylenes, o-xylene, and propane, contributed to more than half of the ozone formation potential in this study. The noncarcinogenic risks of VOCs in this study were within the international safety standard, whereas the carcinogenic risks exceeded the standard by 2.3–4.6 times, suggesting that carcinogenic risks were more serious than noncarcinogenic risks. VOCs presented 2.2 and 1.4 times noncarcinogenic and carcinogenic risks during rush hours than during non-rush hours, respectively. Notably, the carcinogenic risk in period Ⅳ was comparable with that in period Ⅲ; however, the vehicle numbers and VOC mixing ratios were the lowest at night, which may have attributed to the increasing number and proportion of methanol M100-fueled vehicles in the tunnel. Therefore, VOCs emitted by new energy vehicles should also be seriously considered while evaluating fossil fuel vehicle emissions.
显示更多 [+] 显示较少 [-]Comprehensive evaluation of ionic liquid [Bmim][PF6] for absorbing toluene and acetone
2021
Ma, Xiaoling | Wang, Wenlong | Sun, Chenggong | Sun, Jing
Absorption is an eminent technology for volatile organic compounds (VOCs) elimination with the merits of high efficiency and low cost. Absorbent plays a critical role in the absorption process, and the thermal stability, saturation capacity, and regeneration performance should be concerned. As a kind of green and eco-friendly solvent, ionic liquid (IL) is expected to be a substitute for the conventional VOCs absorbent. In this study, 1-butyl-3-methylimidazolium hexafluorophosphate ([Bmim][PF₆]) is employed to absorb the modeling VOCs (toluene and acetone). Moreover, the used [Bmim][PF₆] is recovered by thermal distillation and the reusability is then conducted by consecutive batch experiments. Based on that, the thermal stability of [Bmim][PF₆] is comprehensively examined, in which the kinetic and thermodynamic parameters are also calculated. Results reveal that [Bmim][PF₆] owned promising toluene absorption performance with inlet concentration of 3000 mg/m³ and flow rate of 300 mL/min at 20 °C, it possesses the saturated adsorption capacity of 5.16 mg/g. [Bmim][PF₆] also shows satisfying thermal stability up to 610 K. In addition, thermal distillation is proved to be a reliable regeneration route on account of the recovered [Bmim][PF₆] remained satisfying capacity even after five cycles.
显示更多 [+] 显示较少 [-]