细化搜索
结果 1-10 的 911
Determinants of carbon load in airway macrophages in pregnant women
2022
Miri, Mohammad | Rezaei, Hossein | Momtaz, Seyed Mojtaba | Najafi, Moslem Lari | Adli, Abolfazl | Pajohanfar, Nasim sadat | Abroudi, Mina | Bazghandi, Malihe Sadat | Razavi, Zahra | Alonso, Lucia | Tonne, Cathryn | Basagaña, Xavier | Nieuwenhuijsen, Mark J. | Sunyer, Jordi | Nawrot, Tim S. | Dadvand, Payam
The airway macrophages carbon loading (AMCL) has been suggested to be a biomarker of the long-term exposure to air pollution; however, to date no study has characterized AMCL for the pregnancy period. Therefore, this study aimed to assess the determinants of AMCL during pregnancy in Iran, a middle-income country. This study was based on a sample of 234 pregnant women with term and normal vaginal delivery who were residing in Sabzevar, Iran (2019). We characterized 35 potential determinants of personal exposure to air pollution for each participant, including six personal, nine indoor, and 20 home-outdoor factors. We applied Deletion/Substitution/Addition algorithm to identify the most relevant determinants that could predict AMCL levels. The median (IQR) of AMCL level was 0.12 (0.30) μm² with a successful sputum induction in 82.9% (194) of participants. Ambient residential PM₂.₅ levels were positively associated with higher AMCL levels. On the other hand, increased residential distance to the traffic lights, squares and ring-roads, the duration of opening window per day, and opening window during cooking were inversely associated with AMCL levels. Our findings provide novel insights on the different personal, indoor, and outdoor determinants of personal exposure to air pollution during pregnancy in a middle-income country.
显示更多 [+] 显示较少 [-]Size-dependent in vitro inhalation bioaccessibility of PAHs and O/N PAHs - Implications to inhalation risk assessment
2022
Besis, Athanasios | Gallou, Domniki | Avgenikou, Anna | Serafeim, Eleni | Samara, Constantini
Size segregated samples (<0.49, 0.49–0.95, 0.95–1.5, 1.5–3.0, 3.0–7.2 and > 7.2 μm) of atmospheric particulate matter (APM) were collected at a traffic site in the urban agglomeration of Thessaloniki, northern Greece, during the cold and the warm period of 2020. The solvent-extractable organic matter was analyzed for selected organic contaminants including polycyclic aromatic hydrocarbons (PAHs), and their nitro- and oxy-derivarives (NPAHs and OPAHs, respectively). Mean concentrations of ∑₁₆PAHs, ∑₆NPAHs and ∑₁₀OPAHs associated to total suspended particles (TSP) were 18 ng m⁻³, 0.2 ng m⁻³ and 0.9 ng m⁻³, respectively, in the cold period exhibiting significant decrease (6.4, 0.2 and 0.09 ng m⁻³, respectively) in the warm period. The major amount of all compounds was found to be associated with the alveolar particle size fraction <0.49 μm. The inhalation bioaccessibility of PAHs and O/N PAHs was measured in vitro using two simulated lung fluids (SLFs), the Gamble's solution (GS) and the artificial lysosomal fluid (ALF). With both SLFs, the derived bioaccessible fractions (BAFs) followed the order PAHs > OPAHs > NPAHs. Although no clear dependence of bioaccessibility on particle size was obtained, increased bioaccessibility of PAHs and PAH derivatives in coarse particles (>7.2 μm) was evident. Bioaccessibility was found to be strongly related to the logKOW and the water solubility of individual compounds hindering limited mobilization of the most hydrophobic and less water-soluble compounds from APM to SLFs. The lifetime cancer risk due to inhalation exposure to bioaccessible PAHs, NPAHs and OPAHs was estimated and compared to those calculated from the particulate concentrations of organic contaminants.
显示更多 [+] 显示较少 [-]Effect of sampling duration on the estimate of pollutant concentration behind a heavy-duty vehicle: A large-eddy simulation
2022
Xie, Jingwei | Liu, Chun-Ho | Huang, Yuhan | Mok, Wai-Chuen
Plume chasing is cost-effective, measuring individual, on-road vehicular emissions. Whereas, wake-flow-generated turbulence results in intermittent, rapid pollutant dilution and substantial fluctuating concentrations right behind the vehicle being chased. The sampling duration is therefore one of the important factors for acquiring representative (average) concentrations, which, however, has been seldom addressed. This paper, which is based on the detailed spatio-temporal dispersion data after a heavy-duty truck calculated by large-eddy simulation (LES), examines how sampling duration affects the uncertainty of the measured concentrations in plume chasing. The tailpipe dispersion is largely driven by the jet-like flows through the vehicle underbody with approximate Gaussian concentration distribution for x ≤ 0.6h, where x is the distance after the vehicle and h the characteristic vehicle size. Thereafter for x ≥ 0.6h, the major recirculation plays an important role in near-wake pollutant transport whose concentrations are highly fluctuating and positively shewed. Plume chasing for a longer sampling duration is more favourable but is logistically impractical in busy traffic. Sampling duration, also known as averaging time in the statistical analysis, thus has a crucial role in sampling accuracy. With a longer sampling (averaging) duration, the sample mean concentration converges to the population mean, improving the sample reliability. However, this effect is less pronounced in long sampling duration. The sampling accuracy is also influenced by the locations of sampling points. For the region x > 0.6h, the sampling accuracy is degraded to a large extent. As a result, acceptable sample mean is hardly achievable. Finally, frequency analysis unveils the mechanism leading to the variance in concentration measurements which is attributed to sampling duration. Those data with frequency higher than the sampling frequency are filtered out by moving average in the statistical analyses.
显示更多 [+] 显示较少 [-]Concentration and leachability of N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD) and its quinone transformation product (6PPD-Q) in road dust collected in Tokyo, Japan
2022
Hiki, Kyoshiro | Yamamoto, Hiroshi
A recently identified chemical, 2-((4-Methylpentan-2-yl)amino)-5-(phenylamino)cyclohexa-2,5-diene-1,4-dione (6PPD-quinone; 6PPD-Q), is a transformation product of an additive used in the manufacture of tire rubber and causes acute lethality in coho salmon (Oncorhynchus kisutch) in urban watersheds. Despite its potential presence and ecotoxicity in receiving waters worldwide, information on the occurrence and fate of 6PPD-Q is limited. Here, we investigated the concentrations of 6PPD-Q and its parent chemical, 6PPD, in road dust collected from arterial and residential roads in Tokyo, Japan from May to October 2021. 6PPD-Q concentrations were highest from May to June, when atmospheric ozone concentrations are the highest in Japan; a correlation between 6PPD-Q and photochemical oxidants, as an alternative to ozone, corroborated this finding. We also found that 6PPD-Q concentrations at photochemical oxidant concentrations ranging from 35 to 47 ppbv were higher in dust collected from roads with high traffic volumes (i.e., arterial roads; median: 8.6 μg/g-OC) than in dust collected from roads with lower traffic volumes (i.e., residential roads; median: 6.3 μg/g-OC), indicating that 6PPD-Q is generated from traffic-related sources. We also found that 6PPD-Q was leached from dust particles within a few hours, with a log partitioning coefficient between organic carbon and water (KOC) of 3.2–3.5. The present results will help to understand the environmental occurrence, fate, and behavior of 6PPD-Q.
显示更多 [+] 显示较少 [-]The longitudinal biomonitoring of residents living near the waste incinerator of Turin: Polycyclic aromatic hydrocarbon metabolites after three years from the plant start-up
2022
Iamiceli, A.L. | Abate, V. | Bena, A. | De Filippis, Sp | De Luca, S. | Iacovella, N. | Farina, E. | Gandini, M. | Orengia, M. | De Felip, E. | Abballe, A. | Dellatte, E. | Ferri, F. | Fulgenzi, Ar | Ingelido, A.M. | Ivaldi, C. | Marra, V. | Miniero, R. | Crosetto, L. | Procopio, E. | Salamina, G.
The waste-to-energy (WTE) incinerator plant located in the Turin area (Italy) started to recover energy from the combustion of municipal solid waste in 2013. A health surveillance program was implemented to evaluate the potential health effects on the population living near the plant. This program included a longitudinal biomonitoring to evaluate temporal changes of some environmental pollutants, including polycyclic aromatic hydrocarbons (PAHs), in residents living in areas near the Turin incinerator (exposed group, E) compared to those observed in subjects living far from the plant (not exposed group, NE). Ten monohydroxy-PAHs (OH-PAHs), consisting in the principal metabolites of naphthalene, fluorine, phenanthrene, and pyrene, were analyzed in urines collected from the E and NE subjects after one (T₁) and three years (T₂) of plant activity and compared with those determined in the same cohort established before the plant start-up (T₀). Spearman correlation analysis was undertaken to explore possible associations between OH-PAHs and personal characteristics, lifestyle variables, and dietary habits. A linear mixed model (LMM) approach was applied to determine temporal trends of OH-PAHs observed in the E and NE subjects and to evaluate possible differences in trend between the two groups. Temporal trends of OH-PAHs determined by LMM analysis demonstrated that, at all times, the E group had concentrations lower than those assessed in the NE group, all other conditions being equal. Moreover, no increase in OH-PAH concentrations was observed at T₁ and T₂ either in E or in NE group. Significant positive correlations were found between all OH-PAHs and smoking habits. Regarding variables associated to outdoor PAH exposure, residence near high traffic roads and daily time in traffic road was positively correlated with 1-hydroxynaphthalene and 1-hydroxypyrene, respectively. In conclusion, no impact of the WTE plant on exposure to PAHs was observed on the population living near the plant.
显示更多 [+] 显示较少 [-]Heterologous spatial distribution of soil polycyclic aromatic hydrocarbons and the primary influencing factors in three industrial parks
2022
Ren, Helong | Su, Peixin | Kang, Wei | Ge, Xiang | Ma, Shengtao | Shen, Guofeng | Chen, Qiang | Yu, Yingxin | An, Taicheng
Soil polycyclic aromatic hydrocarbons (PAHs) generated from industrial processes are highly spatially heterologous, with limited quantitative studies on their main influencing factors. The present study evaluated the soil PAHs in three types of industrial parks (a petrochemical industrial park, a brominated flame retardant manufacturing park, and an e-waste dismantling park) and their surroundings. The total concentrations of 16 PAHs in the parks were 340–2.43 × 10³, 26.2–2.63 × 10³, and 394–2.01 × 10⁴ ng/g, which were significantly higher than those in the surrounding areas by 1–2 orders of magnitude, respectively. The highest soil PAH contamination was observed in the e-waste dismantling park. Nap can be considered as characteristic pollutant in the petrochemical industrial park, while Phe in the flame retardant manufacturing park and e-waste dismantling park. Low molecular weight PAHs (2–3 rings) predominated in the petrochemical industrial park (73.0%) and the surrounding area of brominated flame retardant manufacturing park (80.3%). However, high molecular weight PAHs (4–6 rings) were enriched in the other sampling sites, indicating distinct sources and determinants of soil PAHs. Source apportionment results suggested that PAHs in the parks were mainly derived from the leakage of petroleum products in the petroleum manufacturing process and pyrolysis or combustion of fossil fuels. Contrarily, the PAHs in the surrounding areas could have been derived from the historical coal combustion and traffic emissions. Source emissions, wind direction, and local topography influenced the PAH spatial distributions.
显示更多 [+] 显示较少 [-]Source tracing with cadmium isotope and risk assessment of heavy metals in sediment of an urban river, China
2022
Fang, Ding | Wang, Hui | Liang, Yangyang | Cui, Kai | Yang, Kun | Lu, Wenxuan | Li, Jing | Zhao, Xiuxia | Gao, Na | Yu, Qizhi | Li, Hui | Jiang, He
The Nanfei River was one of dominant inflowing rivers of the fifth largest freshwater Chaohu Lake in China, which had been subjected to increasing nutrients and contaminants from population expansion, rapid industrialization and agricultural intensification in recent decades. In present study, surface sediment from the Nanfei River was collected to investigate the anthropogenic impact on distribution and bioavailability of heavy metals. Possible Cd sources along the river were constrained by using Cd isotope signatures and labile concentrations of heavy metals in sediment were determined through the DGT technique for risk assessment. Results showed that Cd in river sediment showed greatest enrichment (EF 0.8–9.4), indicating massive pollution from anthropogenic activities. Among the various possible Cd source materials, urban road dust, industrial soil and chicken manure, displayed higher Cd abundance and enrichment that might contribute to Cd accumulation in river sediment. Cadmium isotopic composition in river sediment was ranged from −0.21 ± 0.01‰ to 0.13 ± 0.03‰, whereas yielded relative variation from −0.31 ± 0.02‰ to 0.23 ± 0.01‰ in source materials. Accordingly, Cd sources along the river were constrained, i.e. traffic and industrial activities in the upper and middle reaches whereas agricultural activities in the lower reaches. Furthermore, the evaluation on ecological risk of heavy metals in sediment on basis of SQGs and DGT-labile concentrations demonstrated that Pb and Zn might pose higher risk on aquatic species. The present study confirmed that Cd isotopes were promising source tracer in environmental studies.
显示更多 [+] 显示较少 [-]Increased contribution to PM2.5 from traffic-influenced road dust in Shanghai over recent years and predictable future
2022
Wang, Meng | Duan, Yusen | Zhang, Zhuozhi | Huo, Juntao | Huang, Yu | Fu, Qingyan | Wang, Tao | Cao, Junji | Lee, Shun-cheng
Traffic contributes to fine particulate matter (PM₂.₅) in the atmosphere through engine exhaust emissions and road dust generation. However, the evolution of traffic related PM₂.₅ emission over recent years remains unclear, especially when various efforts to reduce emission e.g., aftertreatment technologies and high emission standards from China IV to China V, have been implemented. In this study, hourly elemental carbon (EC), a marker of primary engine exhaust emissions, and trace element of calcium (Ca), a marker of road dust, were measured at a nearby highway sampling site in Shanghai from 2016 to 2019. A random forest-based machine learning algorithm was applied to decouple the influences of meteorological variables on the measured EC and Ca, revealing the deweathered trend in exhaust emissions and road dust. After meteorological normalization, we showed that non-exhaust emissions, i.e., road dust from traffic, increased their fractional contribution to PM₂.₅ over recent years. In particular, road dust was found to be more important, as revealed by the deweathered trend of Ca fraction in PM₂.₅, increasing at 6.1% year⁻¹, more than twice that of EC (2.9% year⁻¹). This study suggests that while various efforts have been successful in reducing vehicular exhaust emissions, road dust will not abate at a similar rate. The results of this study provide insights into the trend of traffic-related emissions over recent years based on high temporal resolution monitoring data, with important implications for policymaking.
显示更多 [+] 显示较少 [-]Source apportionment, identification and characterization, and emission inventory of ambient particulate matter in 22 Eastern Mediterranean Region countries: A systematic review and recommendations for good practice
2022
Faridi, Sasan | Yousefian, Fatemeh | Roostaei, Vahid | Harrison, Roy M. | Azimi, Faramarz | Niazi, Sadegh | Naddafi, Kazem | Momeniha, Fatemeh | Malkawi, Mazen | Moh'd Safi, Heba Adel | Rad, Mona Khaleghy | Hassanvand, Mohammad Sadegh
Little is known about the main sources of ambient particulate matter (PM) in the 22 Eastern Mediterranean Region (EMR) countries. We designed this study to systematically review all published and unpublished source apportionment (SA), identification and characterization studies as well as emission inventories in the EMR. Of 440 articles identified, 82 (11 emission inventory ones) met our inclusion criteria for final analyses. Of 22 EMR countries, Iran with 30 articles had the highest number of studies on source specific PM followed by Pakistan (n = 15 articles) and Saudi Arabia (n = 8 papers). By contrast, there were no studies in Afghanistan, Bahrain, Djibouti, Libya, Somalia, Sudan, Syria, Tunisia, United Arab Emirates and Yemen. Approximately 72% of studies (51) were published within a span of 2015–2021.48 studies identified the sources of PM₂.₅ and its constituents. Positive matrix factorization (PMF), principal component analysis (PCA) and chemical mass balance (CMB) were the most common approaches to identify the source contributions of ambient PM. Both secondary aerosols and dust, with 12–51% and 8–80% (33% and 30% for all EMR countries, on average) had the greatest contributions in ambient PM₂.₅. The remaining sources for ambient PM₂.₅, including mixed sources (traffic, industry and residential (TIR)), traffic, industries, biomass burning, and sea salt were in the range of approximately 4–69%, 4–49%, 1–53%, 7–25% and 3–29%, respectively. For PM₁₀, the most dominant source was dust with 7–95% (49% for all EMR countries, on average). The limited number of SA studies in the EMR countries (one study per approximately 9.6 million people) in comparison to Europe and North America (1 study per 4.3 and 2.1 million people respectively) can be augmented by future studies that will provide a better understanding of emission sources in the urban environment.
显示更多 [+] 显示较少 [-]Relevance of tyre wear particles to the total content of microplastics transported by runoff in a high-imperviousness and intense vehicle traffic urban area
2022
Goehler, Luiza Ostini | Moruzzi, Rodrigo Braga | Tomazini da Conceição, Fabiano | Júnior, Antônio Aparecido Couto | Speranza, Lais Galileu | Busquets, Rosa | Campos, Luiza Cintra
Microplastics (MPs) are an emerging pollutant and a worldwide issue. A wide variety of MPs and tyre wear particles (TWPs) are entering and spreading in the environment. TWPs can reach waterbodies through runoff, where main contributing particulate matter comes from impervious areas. In this paper, TWPs and other types of MPs that were transported with the runoff of a high populated-impervious urban area were characterised. Briefly, MPs were sampled from sediments in a stormwater detention reservoir (SDR) used for flood control of a catchment area of ∼36 km², of which 73% was impervious. The sampled SDR is located in São Paulo, the most populated city in South America. TWPs were the most common type of MPs in this SDR, accounting for 53% of the total MPs; followed by fragments (30%), fibres (9%), films (4%) and pellets (4%). In particular, MPs in the size range 0.1 mm–0.5 mm were mostly TWPs. Such a profile of MPs in the SDR is unlike what is reported in environmental compartments elsewhere. TWPs were found at levels of 2160 units/(kg sediment·km² of impervious area) and 87.8 units/(kg sediment·km street length); MP and TWP loadings are introduced here for the first time. The annual flux of MPs and TWPs were 7.8 × 10¹¹ and 4.1 × 10¹¹ units/(km²·year), respectively, and TWP emissions varied from 43.3 to 205.5 kg/day. SDRs can be sites to intercept MP pollution in urban areas. This study suggests that future research on MP monitoring in urban areas and design should consider both imperviousness and street length as important factors to normalize TWP contribution to urban pollution.
显示更多 [+] 显示较少 [-]