细化搜索
结果 1-10 的 85
Accumulation and spatial distribution of copper and nutrients in willow as affected by soil flooding: A synchrotron-based X-ray fluorescence study
2019
Cao, Yini | Ma, Chuanxin | Zhang, Jianfeng | Wang, Shufeng | White, Jason C. | Chen, Guangcai | Xing, Baoshan
Copper (Cu) induced phytotoxicity has become a serious environmental problem as a consequence of significant metal release through anthropogenic activity. Understanding the spatial distribution of Cu in plants such as willow is essential to elucidate the mechanisms of metal accumulation and transport in woody plants, particularly as affected by variable environment conditions such as soil flooding. Using synchrotron-based X-ray fluorescence (μ-XRF) techniques, the spatial distribution of Cu and other nutrient elements were investigated in roots and stems of Salix (S.) integra exposed to 450 mg kg⁻¹ Cu under non-flooded (NF)/flooding (F) conditions for 90 d. S. integra grown in the F condition exhibited significant higher tolerance index (TI, determined by the ratio of total biomass in Cu treatments to control) (p < 0.05) than that in the NF condition, indicating soil flooding alleviated Cu toxicity to willow plants. The μ-XRF revealed that Cu was preferentially located in the root cap and meristematic zone of the root tips. Under the NF condition, the Cu intensity in the root epidermis was more highly concentrated than that of the F condition, suggesting the soil flooding significantly inhibited Cu uptake by S. integra. The pattern of the Cu spatial distribution in the S. integra stem indicated that the F condition severely reduced Cu transport via the xylem vessels as a consequence of decreasing the transpiration rate of leaves. To our knowledge, this is the first study to report the in vivo Cu distribution in S. integra in a scenario of co-exposure to the Cu and the soil flooding over a long period. The finding that Cu uptake varies significantly with flooding condition is relevant to the development of strategies for plants to detoxify the metals and to maintain the nutrient homeostasis.
显示更多 [+] 显示较少 [-]New Miscanthus hybrids cultivated at a Polish metal-contaminated site demonstrate high stomatal regulation and reduced shoot Pb and Cd concentrations
2019
Rusinowski, Szymon | Krzyżak, Jacek | Clifton-Brown, John | Kane, Elaine | Mos, Michal | Webster, Richard | Sitko, Krzysztof | Pogrzeba, Marta
The increased bioeconomy targets for the biomass share of renewable energy production across Europe should be met using land unsuitable for food production. Miscanthus breeding programs targeted the production of plants with a diverse range of traits allowing a wider utilization of land resources for biofuel production without competing with arable crops. These traits include increasing tolerances to drought, chilling, and to metal(loid)s excess. Two novel Miscanthus hybrids, GNT41 and GNT34, were compared against Miscanthus x giganteus (Mxg) on metal-contaminated arable land in Poland. This study aimed at evaluating their yield, biomass quality and quantifying seasonal differences in photosynthetic and transpiration parameters. A secondary objective was to identify key physiological mechanisms underlying differences in metal accumulation between the investigated plants. The new hybrids produced a similar yield to Mxg (13–15 t ha−1 yr−1), had shorter shoots, higher Leaf Area Index and stem number. Based on gas exchange measurements, GNT34 exhibited isohydric (water-conserving) behavior. The stomatal response to light of the new hybrids was at least twice as fast as that of Mxg, a trait that is often associated with increased seasonal water use efficiency. This contributed to the almost 40% reduction in shoot Pb and Cd concentrations for the new hybrids as compared to Mxg. This suggested that promoting stomatal regulation in conjunction with improved water conservation may be a target for improving plants for wider use on metals contaminated land.
显示更多 [+] 显示较少 [-]Dechlorination and chlorine rearrangement of 1,2,5,5,6,9,10-heptachlorodecane mediated by the whole pumpkin seedlings
2017
Li, Yanlin | Hou, Xingwang | Yu, Miao | Zhou, Qunfang | Liu, Jiyan | Schnoor, Jerald L. | Jiang, Guibin
Short chain chlorinated paraffins (SCCPs) are ubiquitously present as persistent organic pollutants in the environment. However, little information on the interaction of SCCPs with plants is currently available. In this work, young pumpkin plants (Cucurbita maxima × C. Moschata) were hydroponically exposed to the congener of chlorinated decane, 1,2,5,5,6,9,10-heptachlorodecane (1,2,5,5,6,9,10-HepCD), to investigate the uptake, translocation and transformation of chlorinated decanes in the intact plants. It was found that parent HepCD was taken up by the pumpkin roots, translocated from root to shoots, and phytovolatilized from pumpkin plants to air via the plant transpiration flux. Our data suggested that dechlorination of 1,2,5,5,6,9,10-HepCD to lower chlorinated decanes and rearrangement of chlorine atoms in the molecule were all mediated by the whole pumpkin seedlings. Chlorinated decanes were found in the shoots and roots of blank controls, indicating that chlorinated decanes in the air could be absorbed by leaves and translocated from shoots to roots. Lower chlorinated congeners (C10H17Cl5) tended to detain in air compared to higher chlorinated congeners (C10H16Cl6 and other C10H15Cl7). Potential transformation pathway and behavior of 1,2,5,5,6,9,10-HepCD in pumpkin were proposed based on these experiments.
显示更多 [+] 显示较少 [-]Transfer of antibiotics from wastewater or animal manure to soil and edible crops
2017
Antibiotics are added to agricultural fields worldwide through wastewater irrigation or manure application, resulting in antibiotic contamination and elevated environmental risks to terrestrial environments and humans. Most studies focused on antibiotic detection in different matrices or were conducted in a hydroponic environment. Little is known about the transfer of antibiotics from antibiotic-contaminated irrigation wastewater and animal manure to agricultural soil and edible crops. In this study, we evaluated the transfer of five different antibiotics (tetracycline, sulfamethazine, norfloxacin, erythromycin, and chloramphenicol) to different crops under two levels of antibiotic-contaminated wastewater irrigation and animal manure fertilization. The final distribution of tetracycline (TC), norfloxacin (NOR) and chloramphenicol (CAP) in the crop tissues under these four treatments were as follows: fruit > leaf/shoot > root, while an opposite order was found for sulfamethazine (SMZ) and erythromycin (ERY): root > leaf/shoot > fruit. The growth of crops could accelerate the dissipation of antibiotics by absorption from contaminated soil. A higher accumulation of antibiotics was observed in crop tissues under the wastewater treatment than under manure treatment, which was due to the continual irrigation that increased adsorption in soil and uptake by crops. The translocation of antibiotics in crops mainly depended on their physicochemical properties (e.g. log Kow), crop species, and the concentrations of antibiotics applied to the soil. The levels of antibiotics ingested through the consumption of edible crops under the different treatments were much lower than the acceptable daily intake (ADI) levels.
显示更多 [+] 显示较少 [-]Effects of silicon on the distribution of cadmium compartmentation in root tips of Kandelia obovata (S., L.) Yong
2012
Ye, Juan | Yan, Chongling | Liu, Jingchun | Lu, Haoliang | Liu, Tao | Song, Zengfeng
The Effects of silicon (Si) on the distribution of cadmium (Cd) compartmentation in root tips of Kandelia obovata (S., L.) Yong were investigated by pot experiments. Cd concentrations in the apoplastic saps and symplastic fractions of the root tips of K. obovata seedlings were decreased at both Si-supplied treatments. Si addition reduced the concentrations of BaCl₂₋extractable cell-wall-Cd in root tips, but increased the concentrations of Na₃citrate-extractable cell-wall-Cd and HCl-extractable cell-wall-Cd in root tips. The total root-tip contents of Cd were mainly distributed in the apoplast and most of the Cd in the apoplast was bound to the cell wall. Our experiment found that Si increased the ratio of apoplast Cd (>87.08%) and reduced the ratio of Cd in the symplast (<12.92%). This suggested that Si enhanced binding of Cd to the cell walls and restricted the apoplastic transport of Cd.
显示更多 [+] 显示较少 [-]Combining sap flow and eddy covariance approaches to derive stomatal and non-stomatal O3 fluxes in a forest stand
2010
Nunn, A.J. | Cieslik, S. | Metzger, U. | Wieser, G. | Matyssek, R.
Stomatal O3 fluxes to a mixed beech/spruce stand (Fagus sylvatica/Picea abies) in Central Europe were determined using two different approaches. The sap flow technique yielded the tree-level transpiration, whereas the eddy covariance method provided the stand-level evapotranspiration. Both data were then converted into stomatal ozone fluxes, exemplifying this novel concept for July 2007. Sap flow-based stomatal O3 flux was 33% of the total O3 flux, whereas derivation from evapotranspiration rates in combination with the Penman-Monteith algorithm amounted to 47%. In addition to this proportional difference, the sap flow-based assessment yielded lower levels of stomatal O3 flux and reflected stomatal regulation rather than O3 exposure, paralleling the daily courses of canopy conductance for water vapor and eddy covariance-based total stand-level O3 flux. The demonstrated combination of sap flow and eddy covariance approaches supports the development of O3 risk assessment in forests from O3 exposure towards flux-based concepts.
显示更多 [+] 显示较少 [-]Differences in EDTA-assisted metal phytoextraction between metallicolous and non-metallicolous accessions of Rumex acetosa L
2010
Barrutia, Oihana | Garbisu, Carlos | Hernández-Allica, Javier | García-Plazaola, José Ignacio | Becerril, José María
Two common sorrel (Rumex acetosa) accessions, one from a Zn–Pb contaminated site (CS accession) and the other from an uncontaminated site (UCS accession), were hydroponically exposed to a mixture of heavy metals (Pb2+ + Zn2+ + Cd2+) with and without EDTA at an equimolar rate. The metallicolous CS accession showed a higher tolerance to metal treatment in the absence of the chelating agent, whereas the UCS accession was especially tolerant to EDTA treatment alone. Combination of metal and EDTA treatment resulted in a higher Pb accumulation in shoots of both accessions although plants hardly showed phytotoxic symptoms. Cd and Zn uptake was not augmented by EDTA addition to the polymetallic medium. Chelant-assisted Pb accumulation was 70% higher in the CS accession than in the UCS accession, despite the fact that the former accession evapotranspired less water than the UCS accession. These results support the existence of a non-selective apoplastic transport of metal chelates by R. acetosa roots, not related to transpiration stream.
显示更多 [+] 显示较少 [-]Mechanistic insight into the interactions of EDDS with copper in the rhizosphere of polluted soils
2020
Zhao, Yan-ping | Cui, Jin-li | Chan, Ting-shan | Chen, Ya-hua | Li, Xiang-Dong
The biodegradable S,S-ethylenediaminedisuccinic acid (EDDS) is a promising chelant for chelant-assisted phytoextraction of trace metals in polluted soil. The interactions between EDDS and trace metals/major elements in the soil affect the metal bioavailability and their subsequent phytoextraction efficiency. This study aimed to investigate the macroscopic and molecular-level interactions of EDDS with Cu in the rhizosphere and non-rhizosphere of a Cu-polluted agricultural soil. A multi-interlayer rhizobox planted with ryegrass was used to simulate the transport of EDDS and Cu from the non-rhizosphere to rhizosphere soils. The results showed that EDDS (5 mM kg⁻¹) significantly dissociated Cu (285–690 fold), Fe (by 3.47–60.2 fold), and Al (2.43–5.31 fold) from the soil in comparison with a control group. A combination of micro-X-ray fluorescence, X-ray absorption near-edge structure spectroscopy, and sequential extraction analysis revealed that EDDS primarily chelated the adsorbed fraction of Cu by facilitating the dissolution of goethite. Moreover, as facilitated by ryegrass transpiration, CuEDDS was moved from the non-rhizosphere to rhizosphere and accumulated in ryegrass. In situ processes of Cu extraction and transport by EDDS in the rhizosphere were further elucidated with chemical speciation analysis and geochemical modeling methods.
显示更多 [+] 显示较少 [-]Acropetal translocation of phenanthrene in wheat seedlings: Xylem or phloem pathway?
2020
Due to the potential toxicity of polycyclic aromatic hydrocarbons (PAHs) to humans, the uptake and translocation of PAHs in food crops have gained much attention. However, it is still unclear whether phloem participates in the acropetal translocation of PAHs in plants. Herein, the evidence for acropetal translocation of phenanthrene (a model PAH) via phloem is firstly tested. Wheat (Triticum aestivum L.) new leaves contain significantly higher phenanthrene concentration than old leaves (P < 0.05), and the inhibitory effect on phenanthrene translocation is stronger in old leaves after abscisic acid and polyvinyl alcohol (two common transpiration inhibitors) application. Phenanthrene concentration in xylem sap is slightly higher than in phloem sap. Ring-girdling treatment can significantly reduce phenanthrene concentration in castor bean (Ricinus communis L.) leaves. Two-photon fluorescence microscope images indicate a xylem-to-phloem and acropetal phloem translocation of phenanthrene in castor bean stem. Therefore, phloem is involved in the acropetal translocation of phenanthrene in wheat seedlings, especially when the xylem is not mature enough in scattered vascular bundle plants. Our results provide a deeper understanding of PAH translocation in plants, which have significant implications for food safety and phytoremediation enhancement of PAH-contaminated soil and water.
显示更多 [+] 显示较少 [-]Removal of fine particulate matter (PM2.5) via atmospheric humidity caused by evapotranspiration
2019
Ryu, Jeongeun | Kim, Jeong Jae | Byeon, Hyeokjun | Go, Taesik | Lee, Sang Joon
Reduction of particulate matter (PM) has emerged as one of the most significant challenges in public health and environment protection worldwide. To address PM-related problems and effectively remove fine particulate matter (PM2.5), environmentalists proposed tree planting and afforestation as eco-friendly strategies. However, the PM removal effect of plants and its primary mechanism remains uncertain. In this study, we experimentally investigated the PM removal performance of five plant species in a closed chamber and the effects of relative humidity (RH) caused by plant evapotranspiration, as a governing parameter. On the basis of the PM removal test for various plant species, we selected Epipremnum aureum (Scindapsus) as a representative plant to identify the PM removal efficiency depending on evapotranspiration and particle type. Results showed that Scindapsus yielded a high PM removal efficiency for smoke type PM2.5 under active transpiration. We examined the correlation of PM removal and relative humidity (RH) and evaluated the increased effect of RH on PM2.5 removal by using a plant-inspired in vitro model. Based on the present results, the increase of RH due to evapotranspiration is crucial to the reduction of PM2.5 using plants.
显示更多 [+] 显示较少 [-]