细化搜索
结果 1-2 的 2
A survey and risk assessment of neonicotinoids in water, soil and sediments of Belize
2019
Bonmatin, Jean-Marc | Noome, Dominique A. | Moreno, Heron | Mitchell, Edward A.D. | Glauser, Gaëtan | Soumana, Oumarou S. | Bijleveld van Lexmond, Maarten | Sánchez-Bayo, Francisco
Usage of neonicotinoids is common in all agricultural regions of the world but data on environmental contamination in tropical regions is scarce. We conducted a survey of five neonicotinoids in soil, water and sediment samples along gradients from crops fields to protected lowland tropical forest, mangroves and wetlands in northern Belize, a region of high biodiversity value. Neonicotinoid frequency of detection and concentrations were highest in soil (68%) and lowest in water (12%). Imidacloprid was the most common residue reaching a maximum of 17.1 ng/g in soil samples. Concentrations in soils differed among crop types, being highest in melon fields and lowest in banana and sugarcane fields. Residues in soil declined with distance to the planted fields, with clothianidin being detected at 100 m and imidacloprid at more than 10 km from the nearest applied field. About half (47%) of the sediments collected contained residues of at least one compound up to 10 km from the source. Total neonicotinoid concentrations in sediments (range 0.014–0.348 ng/g d. w.) were about 10 times lower than in soils from the fields, with imidacloprid being the highest (0.175 ng/g). A probabilistic risk assessment of the residues in the aquatic environment indicates that 31% of sediment samples pose a risk to invertebrate aquatic and benthic organisms by chronic exposure, whereas less than 5% of sediment samples may incur a risk by acute exposure. Current residue levels in water samples do not appear to pose risks to the aquatic fauna. Fugacity modeling of the four main compounds detected suggest that most of the dissipation from the agricultural fields occurs via runoff and leaching through the porous soils of this region. We call for better monitoring of pesticide contamination and invertebrate inventories and finding alternatives to the use of neonicotinoids in agriculture.
显示更多 [+] 显示较少 [-]Soil-extractable phosphorus and phosphorus saturation threshold in beef cattle pastures as affected by grazing management and forage type
2014
Sigua, Gilbert C. | Chase, Chad C., Jr | Albano, Joseph
Grazing can accelerate and alter the timing of nutrient transfer, and could increase the amount of extractable phosphorus (P) cycle from soils to plants. The effects of grazing management and/or forage type that control P cycling and distribution in pasture's resources have not been sufficiently evaluated. Our ability to estimate the levels and changes of soil-extractable P and other crop nutrients in subtropical beef cattle pastures has the potential to improve our understanding of P dynamics and nutrient cycling at the landscape level. To date, very little attention has been paid to evaluating transfers of extractable P in pasture with varying grazing management and different forage type. Whether or not P losses from grazed pastures are significantly greater than background losses and how these losses are affected by soil, forage management, or stocking density are not well understood. The objective of this study was to evaluate the effect of grazing management (rotational versus “zero” grazing) and forage types (FT; bahiagrass, Paspalum notatum, Flugge versus rhizoma peanuts, Arachis glabrata, Benth) on the levels of extractable soil P and degree of P saturation in beef cattle pastures. This study (2004–2007) was conducted at the Subtropical Agricultural Research Station, US Department of Agriculture–Agricultural Research Service located 7 miles north of Brooksville, FL. Soil (Candler fine sand) at this location was described as well-drained hyperthermic uncoated Typic Quartzipsamments. A split plot arrangement in a completely randomized block design was used and each treatment was replicated four times. The main plot was represented by grazing management (grazing vs. no grazing) while forage types (bahiagrass vs. perennial peanut) as the sub-plot treatment. Eight steel exclosures (10 × 10 m) were used in the study. Four exclosures were placed and established in four pastures with bahiagrass and four exclosures were established in four pastures with rhizoma peanuts to represent the “zero” grazing treatment. The levels of soil-extractable P and degree of P saturation (averaged across FT and soil depth) of 22.1 mg kg⁻¹and 11.6 % in pastures with zero grazing were not significantly (p ≤ 0.05) different from the levels of soil-extractable P and degree of P saturation of 22.8 mg kg⁻¹and 12.9 % in pastures with rotational grazing, respectively. On the effect of FT, levels of soil-extractable P and degree of P saturation were significantly higher in pastures with rhizoma peanuts than in pastures with bahiagrass. There was no net gain of soil-extractable P due to the presence of animals in pastures with rotational grazing. Averaged across years, soil-extractable P in pastures with rotational grazing and with “zero” grazing was less than 150 mg kg⁻¹, the water quality protection. There had been no movement of soil-extractable P into the soil pedon since average degree of P saturation in the upper 15 cm was 14.3 % while the average degree of P saturation in soils at 15–30 cm was about 9.9 %. Overall, average extractable P did not exceed the crop requirement threshold of 50 mg P kg⁻¹and the soil P saturation threshold of 25 %, suggesting that reactive P is not a problem. Our study revealed that rhizoma peanuts and bahiagrass differ both in their capacity to acquire nutrients from the soil and in the amount of nutrients they need per unit growth. Rhizoma peanuts, which are leguminous forage, would require higher amounts of P compared with bahiagrass. The difference in the amount of P needed by these forages could have a profound effect on their P uptake that can be translated to the remaining amount of P in the soils. Periodic applications of additional P may be necessary especially for pastures with rhizoma peanuts to sustain their agronomic needs and to potentially offset the export of P due to animal production. Addition of organic amendments could represent an important strategy to protect pasture lands from excessive soil resources exploitation.
显示更多 [+] 显示较少 [-]