细化搜索
结果 1-10 的 96
Can C-budget of natural capital be restored through conservation agriculture in a tropical and subtropical environment?
2022
de Moraes Sá, João Carlos | Lal, R. | Briedis, Clever | de Oliveira Ferreira, Ademir | Tivet, Florent | Inagaki, Thiago Massao | Potma Gonçalves, Daniel Ruiz | Canalli, Lutécia Beatriz | Burkner dos Santos, Josiane | Romaniw, Jucimare
Conservation agriculture through no-till based on cropping systems with high biomass-C input, is a strategy to restoring the carbon (C) lost from natural capital by conversion to agricultural land. We hypothesize that cropping systems based on quantity, diversity and frequency of biomass-C input above soil C dynamic equilibrium level can recover the natural capital. The objectives of this study were to: i) assess the C-budget of land use change for two contrasting climatic environments, ii) estimate the C turnover time of the natural capital through no-till cropping systems, and iii) determine the C pathway since soil under native vegetation to no-till cropping systems. In a subtropical and tropical environment, three types of land use were used: a) undisturbed soil under native vegetation as the reference of pristine level; b) degraded soil through continuous tillage; and c) soil under continuous no-till cropping system with high biomass-C input. At the subtropical environment, the soil under continuous tillage caused loss of 25.4 Mg C ha⁻¹ in the 0–40 cm layer over 29 years. Of this, 17 Mg C ha⁻¹ was transferred into the 40–100 cm layers, resulting in the net negative C balance for 0–100 cm layer of 8.4 Mg C ha⁻¹ with an environmental cost of USD 1968 ha⁻¹. The 0.59 Mg C ha⁻¹ yr⁻¹ sequestration rate by no-till cropping system promote the C turnover time (soil and vegetation) of 77 years. For tropical environment, the soil C losses reached 27.0 Mg C ha⁻¹ in the 0–100 cm layer over 8 years, with the environmental cost of USD 6155 ha⁻¹, and the natural capital turnover time through C sequestration rate of 2.15 Mg C ha⁻¹ yr⁻¹ was 49 years. The results indicated that the particulate organic C and mineral associate organic C fractions are the indicators of losses and restoration of C and leading C pathway to recover natural capital through no-till cropping systems.
显示更多 [+] 显示较少 [-]Saline mine-water alters the structure and function of prokaryote communities in shallow groundwater below a tropical stream
2021
Chandler, Lisa | Harford, Andrew J. | Hose, Grant C. | Humphrey, Chris L. | Chariton, Anthony | Greenfield, Paul | O'Neill, Jenny
Bacteria and archaea (prokaryotes) are vital components for maintaining healthy function of groundwater ecosystems. The prokaryotic community composition and associated putative functional processes were examined in a shallow sandy aquifer in a wet-dry tropical environment. The aquifer had a contaminated gradient of saline mine-water, which primarily consisted of elevated magnesium (Mg²⁺) and sulfate (SO₄²⁻), although other major ions and trace metals were also present. Groundwaters were sampled from piezometers, approximately 2 m in depth, located in the creek channel upstream and downstream of the mine-water influence. Sampling occurred during the dry-season when only subsurface water flow was present. Next generation sequencing was used to analyse the prokaryote assemblages using 16S rDNA and metabolic functions were predicted with FAPROTAX. Significant changes in community composition and functional processes were observed with exposure to mine-waters. Communities in the exposed sites had significantly lower relative abundance of methanotrophs such as Methylococcaceae and methanogens (Methanobacteriaceae), but higher abundance in Nitrososphaeraceae, associated with nitrification, indicating potentially important changes in the biogeochemistry of the exposed sites. The changes were most strongly correlated with concentrations of SO₄²⁻, Mg²⁺ and Na⁺. This knowledge allows an assessment of the risk of mine-water contamination to groundwater ecosystem function and aids mine-water management.
显示更多 [+] 显示较少 [-]A survey and risk assessment of neonicotinoids in water, soil and sediments of Belize
2019
Bonmatin, Jean-Marc | Noome, Dominique A. | Moreno, Heron | Mitchell, Edward A.D. | Glauser, Gaëtan | Soumana, Oumarou S. | Bijleveld van Lexmond, Maarten | Sánchez-Bayo, Francisco
Usage of neonicotinoids is common in all agricultural regions of the world but data on environmental contamination in tropical regions is scarce. We conducted a survey of five neonicotinoids in soil, water and sediment samples along gradients from crops fields to protected lowland tropical forest, mangroves and wetlands in northern Belize, a region of high biodiversity value. Neonicotinoid frequency of detection and concentrations were highest in soil (68%) and lowest in water (12%). Imidacloprid was the most common residue reaching a maximum of 17.1 ng/g in soil samples. Concentrations in soils differed among crop types, being highest in melon fields and lowest in banana and sugarcane fields. Residues in soil declined with distance to the planted fields, with clothianidin being detected at 100 m and imidacloprid at more than 10 km from the nearest applied field. About half (47%) of the sediments collected contained residues of at least one compound up to 10 km from the source. Total neonicotinoid concentrations in sediments (range 0.014–0.348 ng/g d. w.) were about 10 times lower than in soils from the fields, with imidacloprid being the highest (0.175 ng/g). A probabilistic risk assessment of the residues in the aquatic environment indicates that 31% of sediment samples pose a risk to invertebrate aquatic and benthic organisms by chronic exposure, whereas less than 5% of sediment samples may incur a risk by acute exposure. Current residue levels in water samples do not appear to pose risks to the aquatic fauna. Fugacity modeling of the four main compounds detected suggest that most of the dissipation from the agricultural fields occurs via runoff and leaching through the porous soils of this region. We call for better monitoring of pesticide contamination and invertebrate inventories and finding alternatives to the use of neonicotinoids in agriculture.
显示更多 [+] 显示较少 [-]Tropical climate effect on the toxic heavy metal pollutant course of road-deposited sediments
2019
dos Santos, Paula R.S. | Fernandes, Glauber J.T. | Moraes, Edgar P. | Moreira, Lucio F.F.
In modern society, the intense vehicle traffic and the lack of effective mitigating strategies may adversely impact freshwater systems. Road-deposited sediments (RDS) accumulate a variety of toxic substances which are transported into nature during hydrologic events, mainly affecting water bodies through stormwater runoff. The aim of this study was to evaluate the RDS metal enrichment ratio between the end of wet season and the middle of the dry season for Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn in samples from Natal, Brazil. Twenty RDS, drainage system and river sediment samples were collected in the wet and dry seasons using a stainless-steel pan, brush and spatula. In the laboratory, the samples were submitted to acid digestion and heavy metal concentrations were measured by atomic absorption spectrometry (AAS). A consistent RDS enrichment by heavy metals in dry season samples was followed by an increase in the finest particle size fraction (D < 63 μm). Maximum concentrations were 5, ND, 108, 23810, 83, ND, 77 and 150 mg kg⁻¹ for Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn, respectively. The RDS enrichment ratio was Cr(1.3 ×), Cu(2.6 ×), Fe(3.3 ×), Mn(1.5 ×), Pb(1.5 ×) and Zn(2.1 ×). The Geo-accumulation Index values showed that RDS were moderately polluted for Cu and slighted polluted for Zn and Pb. Principal Component Analysis (PCA) showed that the accumulation of toxic heavy metals decreased according to water flow.
显示更多 [+] 显示较少 [-]A review of nickel toxicity to marine and estuarine tropical biota with particular reference to the South East Asian and Melanesian region
2016
Gissi, Francesca | Stauber, Jennifer L. | Binet, Monique T. | Golding, Lisa A. | Adams, Merrin S. | Schlekat, Christian E. | Garman, Emily R. | Jolley, Dianne F.
The South East Asian Melanesian (SEAM) region contains the world's largest deposits of nickel lateritic ores. Environmental impacts may occur if mining operations are not adequately managed. Effects data for tropical ecosystems are required to assess risks of contaminant exposure and to derive water quality guidelines (WQG) to manage these risks. Currently, risk assessment tools and WQGs for the tropics are limited due to the sparse research on how contaminants impact tropical biota. As part of a larger project to develop appropriate risk assessment tools to ensure sustainable nickel production in SEAM, nickel effects data were required. The aim of this review was to compile data on the effects of nickel on tropical marine, estuarine, pelagic and benthic species, with a particular focus on SEAM.There were limited high quality chronic nickel toxicity data for tropical marine species, and even fewer for those relevant to SEAM. Of the data available, the most sensitive SEAM species to nickel were a sea urchin, copepod and anemone. There is a significant lack of high quality chronic data for several ecologically important taxonomic groups including cnidarians, molluscs, crustaceans, echinoderms, macroalgae and fish. No high quality chronic nickel toxicity data were available for estuarine waters or marine and estuarine sediments. The very sparse toxicity data for tropical species limits our ability to conduct robust ecological risk assessment and may require additional data generation or read-across from similar species in other databases (e.g. temperate) to fill data gaps. Recommendations on testing priorities to fill these data gaps are presented.
显示更多 [+] 显示较少 [-]Ozone phytotoxic potential with regard to fragments of the Atlantic Semi-deciduous Forest downwind of Sao Paulo, Brazil
2014
In the Metropolitan Region of Campinas (MRC), Brazil, high levels of primary pollutants contribute to ozone (O3) formation. However, little is known regarding the O3 effects in the tropics. Objectives in this study were to characterize the present levels of O3 pollution and to evaluate the relevance of current concentration-based indices for assessing the phytotoxic potential of O3. Changes in O3 concentrations and precursors at 5 monitoring stations within towns of MRC were analyzed. The daily O3 profile was typical for urban sites and showed little yearly variation. Given the permanently foliated forest canopy, yearly rather than seasonal O3 indices were thus more appropriate for estimating the effective ozone dose. With yearly SUM00, SUM60 and AOT40 of 156, 16 and 14 ppm h and confirmed by evidence of O3 injury in foliage, oxidative stress in the MRC has reached levels high enough to affect trees from the Atlantic Semi-deciduous Forest.
显示更多 [+] 显示较少 [-]Polychlorinated biphenyls and polybrominated diphenylethers in soils from planted forests and adjacent natural forests on a tropical island
2017
Liu, Xin | Wang, Shuai | Jiang, Yishan | Sun, Yingtao | Li, Jun | Zhang, Gan
Transformation from natural forests to planted forests in tropical regions is an expanding global phenomenon causing major modifications of land cover and soil properties, e.g. soil organic carbon (SOC). This study investigated accumulations of POPs in soils under eucalyptus and rubber forests as compared with adjacent natural forests on Hainan Island, China. Results showed that due to the greater forest filter effect and the higher SOC, the natural forest have accumulated larger amounts of POPs in the top 20 cm soil. Based on correlation and air-soil equilibrium analysis, we highlighted the importance of SOC in the distribution of POPs. It is assumed that the elevated mobility of POPs in the planted forests was caused by greater loss of SOC and extensive leaching in the soil profile. This suggests that a better understanding of global POPs fate should take into consideration the role of planted forests.
显示更多 [+] 显示较少 [-]Parametric retrieval model for estimating aerosol size distribution via the AERONET, LAGOS station
2015
Emetere, Moses Eterigho | Akinyemi, Marvel Lola | Akin-Ojo, Omololu
The size characteristics of atmospheric aerosol over the tropical region of Lagos, Southern Nigeria were investigated using two years of continuous spectral aerosol optical depth measurements via the AERONET station for four major bands i.e. blue, green, red and infrared. Lagos lies within the latitude of 6.465°N and longitude of 3.406°E. Few systems of dispersion model was derived upon specified conditions to solve challenges on aerosols size distribution within the Stokes regime. The dispersion model was adopted to derive an aerosol size distribution (ASD) model which is in perfect agreement with existing model. The parametric nature of the formulated ASD model shows the independence of each band to determine the ASD over an area. The turbulence flow of particulates over the area was analyzed using the unified number (Un). A comparative study via the aid of the Davis automatic weather station was carried out on the Reynolds number, Knudsen number and the Unified number. The Reynolds and Unified number were more accurate to describe the atmospheric fields of the location. The aerosols loading trend in January to March (JFM) and August to October (ASO) shows a yearly 15% retention of aerosols in the atmosphere. The effect of the yearly aerosol retention can be seen to partly influence the aerosol loadings between October and February.
显示更多 [+] 显示较少 [-]Impacts of fish farm pollution on ecosystem structure and function of tropical headwater streams
2013
Rosa, Rodrigo dos Santos | Aguiar, Anna Carolina Fornero | Boëchat, Iola Gonçalves | Gücker, Björn
We investigated the impacts of effluent discharge from small flow-through fish farms on stream water characteristics, the benthic invertebrate community, whole-system nitrate uptake, and ecosystem metabolism of three tropical headwater streams in southeastern Brazil. Effluents were moderately, i.e. up to 20-fold enriched in particulate organic matter (POM) and inorganic nutrients in comparison to stream water at reference sites. Due to high dilution with stream water, effluent discharge resulted in up to 2.0-fold increases in stream water POM and up to 1.8-fold increases in inorganic nutrients only. Moderate impacts on the benthic invertebrate community were detected at one stream only. There was no consistent pattern of effluent impact on whole-stream nitrate uptake. Ecosystem metabolism, however, was clearly affected by effluent discharge. Stream reaches impacted by effluents exhibited significantly increased community respiration and primary productivity, stressing the importance of ecologically sound best management practices for small fish farms in the tropics.
显示更多 [+] 显示较少 [-]Trace element uptake by Eleocharis equisetina (spike rush) in an abandoned acid mine tailings pond, northeastern Australia: Implications for land and water reclamation in tropical regions
2011
Lottermoser, Bernd G. | Ashley, Paul M.
This study was conducted to determine the uptake of trace elements by the emergent wetland plant species Eleocharis equisetina at the historic Jumna tin processing plant, tropical Australia. The perennial emergent sedge was found growing in acid waters (pH 2.45) and metal-rich tailings (SnAsCuPbZn). E. equisetina displayed a pronounced acid tolerance and tendency to exclude environmentally significant elements (Al, As, Cd, Ce, Co, Cu, Fe, La, Ni, Pb, Se, Th, U, Y, Zn) from its above-substrate biomass. This study demonstrates that geobotanical and biogeochemical examinations of wetland plants at abandoned mined lands of tropical areas can reveal pioneering, metal-excluding macrophytes. Such aquatic macrophytes are of potential use in the remediation of acid mine waters and sulfidic tailings and the reclamation of disturbed acid sulfate soils in subtropical and tropical regions.
显示更多 [+] 显示较少 [-]