细化搜索
结果 1-10 的 975
Volatile organic compounds in urban rivers and their estuaries in Osaka, Japan.
1997
Yamamoto K. | Fukushima M. | Kakutani N. | Kuroda K.
Carbonaceous aerosol at urban and rural sites in the United States.
1986
Shah J.J. | Johnson R.L. | Heyerdahl E.K. | Huntzicker J.J.
Contrasting levels of heavy metals in the feathers of urban pigeons from close habitats suggest limited movements at a restricted scale
2012
Frantz, Adrien | Pottier, Marie-Anne | Karimi, Battle | Corbel, Hélène | Aubry, Emmanuel | Haussy, Claudy | Gasparini, Julien | Castrec-Rouelle, Maryse | Biogéochimie et écologie des milieux continentaux (Bioemco) ; École normale supérieure - Paris (ENS-PSL) ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Université Pierre et Marie Curie - Paris 6 (UPMC)-AgroParisTech-Centre National de la Recherche Scientifique (CNRS) | Centre National de la Recherche Scientifique | Universite Pierre Marie Curie
International audience | Despite restrictions in emissions, heavy metals may remain a major environmental issue due to their numerous sources and their persistence. Here, we assessed current levels of 4 metals (Copper, Cadmium, Lead, Zinc) in the feathers of 91 feral pigeons (Columba livia) from 7 sites in the urbanized region of Paris. Elements were detected in all pigeons, indicating that metals persist in urbanized areas. The ratio between metal concentrations in the feathers vs. in the environment calculated using data from other studies was 2-90 times higher for cadmium than for other metals, underlying its ecological importance. Concentrations in the feathers depended on locality, suggesting that pigeons remain in local habitats at this restricted scale, as expected from previous observations. Overall, our study suggests that urban feral pigeons may represent a good model system for metal biomonitoring. (c) 2012 Elsevier Ltd. All rights reserved.
显示更多 [+] 显示较少 [-]Contrasting levels of heavy metals in the feathers of urban pigeons from close habitats suggest limited movements at a restricted scale
2012
Frantz, Adrien | Pottier, Marie-Anne | Karimi, Battle | Corbel, Hélène | Aubry, Emmanuel | Haussy, Claudy | Gasparini, Julien | Castrec-Rouelle, Maryse | Biogéochimie et écologie des milieux continentaux (Bioemco) ; École normale supérieure - Paris (ENS-PSL) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Université Pierre et Marie Curie - Paris 6 (UPMC)-AgroParisTech-Centre National de la Recherche Scientifique (CNRS) | Centre National de la Recherche Scientifique | Universite Pierre Marie Curie
International audience | Despite restrictions in emissions, heavy metals may remain a major environmental issue due to their numerous sources and their persistence. Here, we assessed current levels of 4 metals (Copper, Cadmium, Lead, Zinc) in the feathers of 91 feral pigeons (Columba livia) from 7 sites in the urbanized region of Paris. Elements were detected in all pigeons, indicating that metals persist in urbanized areas. The ratio between metal concentrations in the feathers vs. in the environment calculated using data from other studies was 2-90 times higher for cadmium than for other metals, underlying its ecological importance. Concentrations in the feathers depended on locality, suggesting that pigeons remain in local habitats at this restricted scale, as expected from previous observations. Overall, our study suggests that urban feral pigeons may represent a good model system for metal biomonitoring. (c) 2012 Elsevier Ltd. All rights reserved.
显示更多 [+] 显示较少 [-]NO2 air pollution drives species composition, but tree traits drive species diversity of urban epiphytic lichen communities
2022
Sebald, Veronica | Goss, Andrea | Ramm, Elisabeth | Gerasimova, Julia V. | Werth, Silke
Lichens serve as important bioindicators of air pollution in cities. Here, we studied the diversity of epiphytic lichens in the urban area of Munich, Bavaria, southern Germany, to determine which factors influence species composition and diversity. Lichen diversity was quantified in altogether 18 plots and within each, five deciduous trees were investigated belonging to on average three tree species (range 1–5). Of the 18 plots, two were sampled in control areas in remote areas of southern Germany. For each lichen species, frequency of occurrence was determined in 10 quadrats of 100 cm² on the tree trunk. Moreover, the cover percentage of bryophytes was determined and used as a variable to represent potential biotic competition. We related our diversity data (species richness, Shannon index, evenness, abundance) to various environmental variables including tree traits, i.e. bark pH levels and species affiliation and air pollution data, i.e. NO₂ and SO₂ concentrations measured in the study plots. The SO₂ levels measured in our study were generally very low, while NO₂ levels were rather high in some plots. We found that the species composition of the epiphytic lichen communities was driven mainly by NO₂ pollution levels and all of the most common species in our study were nitrophilous lichens. Low NO₂ but high SO₂ values were associated with high lichen evenness. Tree-level lichen diversity and abundance were mainly determined by tree traits, not air pollution. These results confirm that ongoing NO₂ air pollution within cities is a major threat to lichen diversity, with non-nitrophilous lichens likely experiencing the greatest risk of local extinctions in urban areas in the future. Our study moreover highlights the importance of large urban green spaces for species diversity. City planners need to include large green spaces when designing urban areas, both to improve biodiversity and to promote human health and wellbeing.
显示更多 [+] 显示较少 [-]Source apportionment, identification and characterization, and emission inventory of ambient particulate matter in 22 Eastern Mediterranean Region countries: A systematic review and recommendations for good practice
2022
Faridi, Sasan | Yousefian, Fatemeh | Roostaei, Vahid | Harrison, Roy M. | Azimi, Faramarz | Niazi, Sadegh | Naddafi, Kazem | Momeniha, Fatemeh | Malkawi, Mazen | Moh'd Safi, Heba Adel | Rad, Mona Khaleghy | Hassanvand, Mohammad Sadegh
Little is known about the main sources of ambient particulate matter (PM) in the 22 Eastern Mediterranean Region (EMR) countries. We designed this study to systematically review all published and unpublished source apportionment (SA), identification and characterization studies as well as emission inventories in the EMR. Of 440 articles identified, 82 (11 emission inventory ones) met our inclusion criteria for final analyses. Of 22 EMR countries, Iran with 30 articles had the highest number of studies on source specific PM followed by Pakistan (n = 15 articles) and Saudi Arabia (n = 8 papers). By contrast, there were no studies in Afghanistan, Bahrain, Djibouti, Libya, Somalia, Sudan, Syria, Tunisia, United Arab Emirates and Yemen. Approximately 72% of studies (51) were published within a span of 2015–2021.48 studies identified the sources of PM₂.₅ and its constituents. Positive matrix factorization (PMF), principal component analysis (PCA) and chemical mass balance (CMB) were the most common approaches to identify the source contributions of ambient PM. Both secondary aerosols and dust, with 12–51% and 8–80% (33% and 30% for all EMR countries, on average) had the greatest contributions in ambient PM₂.₅. The remaining sources for ambient PM₂.₅, including mixed sources (traffic, industry and residential (TIR)), traffic, industries, biomass burning, and sea salt were in the range of approximately 4–69%, 4–49%, 1–53%, 7–25% and 3–29%, respectively. For PM₁₀, the most dominant source was dust with 7–95% (49% for all EMR countries, on average). The limited number of SA studies in the EMR countries (one study per approximately 9.6 million people) in comparison to Europe and North America (1 study per 4.3 and 2.1 million people respectively) can be augmented by future studies that will provide a better understanding of emission sources in the urban environment.
显示更多 [+] 显示较少 [-]Relevance of tyre wear particles to the total content of microplastics transported by runoff in a high-imperviousness and intense vehicle traffic urban area
2022
Goehler, Luiza Ostini | Moruzzi, Rodrigo Braga | Tomazini da Conceição, Fabiano | Júnior, Antônio Aparecido Couto | Speranza, Lais Galileu | Busquets, Rosa | Campos, Luiza Cintra
Microplastics (MPs) are an emerging pollutant and a worldwide issue. A wide variety of MPs and tyre wear particles (TWPs) are entering and spreading in the environment. TWPs can reach waterbodies through runoff, where main contributing particulate matter comes from impervious areas. In this paper, TWPs and other types of MPs that were transported with the runoff of a high populated-impervious urban area were characterised. Briefly, MPs were sampled from sediments in a stormwater detention reservoir (SDR) used for flood control of a catchment area of ∼36 km², of which 73% was impervious. The sampled SDR is located in São Paulo, the most populated city in South America. TWPs were the most common type of MPs in this SDR, accounting for 53% of the total MPs; followed by fragments (30%), fibres (9%), films (4%) and pellets (4%). In particular, MPs in the size range 0.1 mm–0.5 mm were mostly TWPs. Such a profile of MPs in the SDR is unlike what is reported in environmental compartments elsewhere. TWPs were found at levels of 2160 units/(kg sediment·km² of impervious area) and 87.8 units/(kg sediment·km street length); MP and TWP loadings are introduced here for the first time. The annual flux of MPs and TWPs were 7.8 × 10¹¹ and 4.1 × 10¹¹ units/(km²·year), respectively, and TWP emissions varied from 43.3 to 205.5 kg/day. SDRs can be sites to intercept MP pollution in urban areas. This study suggests that future research on MP monitoring in urban areas and design should consider both imperviousness and street length as important factors to normalize TWP contribution to urban pollution.
显示更多 [+] 显示较少 [-]Spatial distribution and potential sources of microplastics in the Songhua River flowing through urban centers in Northeast China
2022
Ma, Min | Liu, Shibo | Su, Meng | Wang, Chi | Ying, Zhian | Huo, Mingxin | Lin, Yingzi | Yang, Wu
Microplastics (MPs) have elicited increasing concerns in freshwater systems worldwide. However, little information is available on the MP pollution in the Songhua River, the third largest river in China. And the understanding of the sources and pathways of MPs is limited. In this study, MPs were sampled from river water and wastewater treatment plants in five cities along the Songhua River to investigate the occurrence, spatial distribution, characteristics, and potential sources of MPs. Polyethylene, polypropylene and polystyrene accounted for more than 95% of the total MPs. MP pollution was determined to be spatially heterogeneous. The concentration of MPs in the urban center was always considerably higher than that in the upper reach, and irregular variation was observed from the urban center to the lower reach for each city. Urbanization was one of the primary driving forces of spatial variability. Statistically significant positive correlations (p-value < 0.05) were noted between the average concentration of MPs in river water and population density (p = 0.0023) and number of industrial enterprises above designated size (p = 0.0042) of each city. Line and fiber were the major shapes, and white was the most dominant color. Large (1–5 mm) and small (≤ 1 mm) MP particles accounted for 50% each. Multiple correspondence analysis as a new methodological approach was conducted to elucidate the sources of MPs for the first time. The potential sources of MPs included daily use, fishing, agricultural, and industrial productions. This work provides information about MP contamination for future studies on freshwater systems and new insights into the source apportionment of MPs.
显示更多 [+] 显示较少 [-]A decade of CO2 flux measured by the eddy covariance method including the COVID-19 pandemic period in an urban center in Sakai, Japan
2022
Ueyama, Masahito | Takano, Tsugumi
Cities constitute an important source of greenhouse gases, but few results originating from long-term, direct CO₂ emission monitoring efforts have been reported. In this study, CO₂ emissions were quasi-continuously measured in an urban center in Sakai, Osaka, Japan by the eddy covariance method from 2010 to 2021. Long-term CO₂ emissions reached 22.2 ± 2.0 kg CO₂ m⁻² yr⁻¹ from 2010 to 2019 (± denotes the standard deviation) in the western sector from the tower representing the densely built-up area. Throughout the decade, the annual CO₂ emissions remained stable. According to an emission inventory, traffic emissions represented the major source of CO₂ emissions within the flux footprint. The interannual variations in the annual CO₂ flux were positively correlated with the mean annual traffic counts at two highway entrances and exits. The CO₂ emissions decreased suddenly, by 32% ± 3.1%, in April and May 2020 during the period in which the first state of emergency associated with COVID-19 was declared. The annual CO₂ emissions also decreased by 25% ± 3.1% in 2020. Direct long-term observations of CO₂ emissions comprise a useful tool to monitor future emission reductions and sudden disruptions in emissions, such as those beginning in 2020 during the COVID-19 pandemic.
显示更多 [+] 显示较少 [-]Polar organic aerosol tracers in two areas in Beijing-Tianjin-Hebei region: Concentration comparison before and in the sept. Third Parade and sources
2021
Li, Li | Wu, Di | Chang, Xing | Tang, Yi | Hua, Yang | Xu, Qingcheng | Deng, Shihuai | Wang, Shuxiao | Hao, Jiming
A total of 106 24-h PM₂.₅ aerosol samples were collected in an urban area (Shijiazhuang, SJZ) and a suburban area (Liulihe, LLH, Fangshan County, Beijing) in the Beijing-Tianjin-Hebei (BTH) region in 2 periods: the first is from 10 July to 10 August, which is before Sept. Third Parade (Period I); the second is from 20 Aug. to 6 Sept. 2015, which is during Sept. Third Parade (Period II). Polar organic tracers, including isoprene, α-pinene, β-caryophyllene and toluene oxidation products, as well as sugars and carboxylic acids were measured. In Period II, rigorous emission-reduction measures were taken in the BTH region. With the anthropogenic emission being cut down significantly, the average concentrations of isoprene, α-pinene, β-caryophyllene and toluene oxidation products and all carboxylic acids (except tetradecanoic, palmitic, and stearic acids), were lower in Period II than those in Period I in LLH, indicating that the SOA tracers were decreased with precursor emission volumes and yields in the atmosphere. Moreover, sugar compounds were shown with comparable levels during the two periods in LLH, suggesting that no measures were taken to reduce the intensities of the biogenic sources. On the contrary, tetradecanoic, palmitic, and stearic acids were shown with obviously higher concentrations in Period II than those in Period I, demonstrating that cooking fumes increased during Sept. Third Parade period.The positive matrix factorization (PMF) model combining with tracer-based method was applied to explore the sources of secondary organic carbon (SOC). It reveals that the sources of SOC include isoprene, α-pinene, β-caryophyllene and toluene oxidation products, fossil fuel combustion, cooking fumes and regionally transferred aged aerosols. These sources accounted for 11.3%, 9.0%, 15.5%, 10.9%, 29.2%, 2.9%, 21.1% of SOC for SJZ, and 12.7%, 11.2%, 9.7%, 14.4%, 25.3%, 0%, 26.7% of SOC for LLH, during the whole sampling periods respectively.
显示更多 [+] 显示较少 [-]