细化搜索
结果 1-10 的 40
The effects of organophosphorus insecticides and heavy metals on DNA damage and programmed cell death in two plant models
2018
Cortés-Eslava, Josefina | Gómez-Arroyo, Sandra | Risueño, Maria C. | Testillano, Pilar S.
The ubiquity of pollutants, such as agrochemicals and heavy metals, constitute a serious risk to human health. To evaluate the induction of DNA damage and programmed cell death (PCD), root cells of Allium cepa and Vicia faba were treated with two organophosphate insecticides (OI), fenthion and malathion, and with two heavy metal (HM) salts, nickel nitrate and potassium dichromate. An alkaline variant of the comet assay was performed to identify DNA breaks; the results showed comets in a dose-dependent manner, while higher concentrations induced clouds following exposure to OIs and HMs. Similarly, treatments with higher concentrations of OIs and HMs were analyzed by immunocytochemistry, and several structural characteristics of PCD were observed, including chromatin condensation, cytoplasmic vacuolization, nuclear shrinkage, condensation of the protoplast away from the cell wall, and nuclei fragmentation with apoptotic-like corpse formation. Abiotic stress also caused other features associated with PCD, such as an increase of active caspase-3-like protein, changes in the location of cytochrome C (Cyt C) toward the cytoplasm, and decreases in extracellular signal-regulated protein kinase (ERK) expression. Genotoxicity results setting out an oxidative via of DNA damage and evidence the role of the high affinity of HM and OI by DNA molecule as underlying cause of genotoxic effect. The PCD features observed in root cells of A. cepa and V. faba suggest that PCD takes place through a process that involves ERK inactivation, culminating in Cyt C release and caspase-3-like activation. The sensitivity of both plant models to abiotic stress was clearly demonstrated, validating their role as good biosensors of DNA breakage and PCD induced by environmental stressors.
显示更多 [+] 显示较少 [-]Environmental impact of sunscreen nanomaterials: Ecotoxicity and genotoxicity of altered TiO₂ nanocomposites on Vicia faba
2011
Foltête, Anne-Sophie | Masfaraud, Jean-François | Bigorgne, Emilie | Nahmani, Johanne | Chaurand, Perrine | Botta, Céline | Labille, Jérôme | Rose, Jerome | Férard, Jean-François | Cotelle, Sylvie
Mineral sunscreen nanocomposites, based on a nano-TiO₂ core, coated with aluminium hydroxide and dimethicone films, were submitted to an artificial ageing process. The resulting Altered TiO₂ Nanocomposites (ATN) were then tested in the liquid phase on the plant model Vicia faba, which was exposed 48 h to three nominal concentrations: 5, 25 and 50 mg ATN/L. Plant growth, photosystem II maximum quantum yield, genotoxicity (micronucleus test) and phytochelatins levels showed no change compared to controls. Oxidative stress biomarkers remained unchanged in shoots while in roots, glutathione reductase activity decreased at 50 mg ATN/L and ascorbate peroxidase activity decreased for 5 and 25 mg ATN/L. Nevertheless, despite the weak response of biological endpoints, ICP-MS measurements revealed high Ti and Al concentrations in roots, and X-ray fluorescence micro-spectroscopy revealed titanium internalization in superficial root tissues. Eventual long-term effects on plants may occur.
显示更多 [+] 显示较少 [-]RETRACTED: Cytotoxicity and genotoxicity evaluation of polystyrene microplastics on Vicia faba roots
2021
Lu, Yin | Ma, Qin | Xu, Xiaolu | Yu, Zhefu | Guo, Tianjiao | Wu, Yangkai
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal).This article has been retracted at the request of the Editors and Corresponding Author.The authors have plagiarized part of a paper that had already appeared in Environmental and Experimental Botany, 179 (2020) 104227, https://doi.org/10.1016/j.envexpbot.2020.104227. One of the conditions of submission of a paper for publication is that authors declare explicitly that their work is original and has not appeared in a publication elsewhere. Re-use of any data should be appropriately cited. As such this article represents a severe abuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process.
显示更多 [+] 显示较少 [-]Treatment effects and genotoxicity relevance of the toxic organic pollutants in semi-coking wastewater by combined treatment process
2017
Liu, Yongjun | Liu, Jing | Zhang, Aining | Liu, Zhe
The removal effects of main toxic organic pollutants in semi-coking wastewater by combined treatment process were investigated, while the genotoxicity relevance of wastewater from different treatment units were monitored by using Vicia faba bioassays. Results showed that 37 kinds of toxic organic pollutants were detected in the crude sewage, most of them were removed by physicochemical pretreatment, and the total concentration of organic pollutants decreased from 4826 mg L⁻¹ to 546 mg L⁻¹. After pretreatment, benzenes, phenols, quinolines and indoles in the wastewater were mainly removed by anaerobic/aerobic biodegradation, but the polycyclic aromatic hydrocarbons (PAHs) were removed mainly by advanced treatment, total concentration of toxic organic pollutants was lower than 0.5 mg L⁻¹ in the effluent. Genotoxicity evaluation results showed that the wastewater from coagulating sedimentation unit or foregoing had significant mutagenic properties. However, the micronuclei (MN) frequency (‰, which was calculated by observing 1000 cells) induced by wastewater after adsorption with modified coke was only 8.06‰, it was no significant difference compared with negative control (7.43‰). It could be concluded that the adsorption treatment was required for the safety of effluent, and the physicochemical-biochemical combined process in this study was suitable for high concentration semi-coking wastewater treatment.
显示更多 [+] 显示较少 [-]Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba
2019
Jiang, Xiaofeng | Chen, Hao | Liao, Yuanchen | Ye, Ziqi | Li, Mei | Klobučar, Göran
Nano- and microplastics have been widely spread in environmental matrices, especially in marine and terrestrial systems. In this study, higher plant Vicia faba root tips were exposed to 5 μm and 100 nm with 10, 50 and 100 mg/L polystyrene fluorescent microplastics (PS-MPs) for 48 h. Root length, weight, oxidative stress and genotoxicity of V. faba were assessed to investigate toxic effects of PS-MPs. The results showed that the biomass and catalase (CAT) enzymes activity of V. faba roots decreased under 5 μm PS-MPs whereas superoxide dismutase (SOD) and peroxidase (POD) enzymes activity significantly increased. Under the 100 nm PS-MPs exposure a significant decrease of growth was observed only at the highest concentration (100 mg/L). However, micronucleus (MN) test and antioxidative enzymes activities showed that 100 nm PS-MPs induce higher genotoxic and oxidative damage to V. faba than 5 μm PS-MPs. Furthermore, the laser confocal scanning microscopy (LCSM) demonstrated that 100 nm PS-MPs can accumulate in V. faba root and most probably block cell connections or cell wall pores for transport of nutrients. These findings provide a new insight into the toxic effects of microplastics on V. faba, and further apply to the ecological risk assessment of microplastics on higher plants.
显示更多 [+] 显示较少 [-]Plant uptake of radionuclides in lysimeter experiments
1998
Gerzabek, M.H. | Strebl, F. | Temmel, B. (Austrian Research Centre Seibersdorf, Division of Life Sciences, A-2444 Seibersdorf (Austria))
Effects of dietary and gaseous fluoride on the aphid Aphis fabae
1998
Davies, M.T. | Port, G.R. | Davison, A.W. (Department of Agricultural and Environmental Science, The University, Newcastle upon Tyne, NE1 7RU (United Kingdom))
Loss of particulate contaminants from plant canopies under wet and dry conditions
1996
Kinnersley, R.P. | Shaw, G. | Bell, J.N.B. | Minski, M.J. | Goddard, A.J.H. (Centre for Analytical Research in the Environment, Imperial College at Silwood Park, Ascot, Berkshire SL5 7TE (United Kingdom))
Air pollution and agricultural aphid pests. I: Fumigation experiments with SO(2) and NO(2)
1990
Houlden, G. | McNeill, S. | Aminu-Kano, M. | Bell, J.N.B. (Department of Biology, Imperial College at Silwood Park, Ascot, Berkshire SL5 7PY (United Kingdom))
Vicia faba as a bioindicator of oil pollution
1996
Malallah, G. | Afzal, M. | Gulshan, S. | Abraham, D. | Kurian, M. | Dhami, M.S.I. (Department of Botany and Microbiology, Faculty of Science, Kuwait University, Safat (Kuwait))