细化搜索
结果 1-10 的 72
Disposal technology and new progress for dioxins and heavy metals in fly ash from municipal solid waste incineration: A critical review 全文
2022
Shunda lin, | Jiang, Xuguang | Zhao, Yimeng | Yan, Jianhua
Incineration has gradually become the most effective way to deal with MSW due to its obvious volume reduction and weight reduction effects. However, since heavy metals and organic pollutants carried by municipal solid waste incinerator fly ash (MSWI FA) pose a serious threat to the ecological environment and human health, they need to be handled carefully. In this study, the current status of MSWI FA disposal was first reviewed, and the harmless and resourceful disposal technologies of heavy metals and organic pollutants in MSWI FA are summarized as well. A summary of the advantages and disadvantages of each technology, including sintering, melting/vitrification, hydrothermal treatment, mechanochemistry, solidification/stabilization of MSWI FA, is compared. Finally, the research work that needs to be strengthened in the future (such as codisposal of multiple wastes, long-term stability research of disposal products, etc.) was proposed. Through comprehensive analysis, some reasonable and feasible suggestions were provided for the effective and safe disposal of MSWI FA in the future.
显示更多 [+] 显示较少 [-]Characteristics, correlations and health risks of PCDD/Fs and heavy metals in surface soil near municipal solid waste incineration plants in Southwest China 全文
2022
Bo, Xin | Guo, Jing | Wan, Ruxing | Jia, Yuling | Yang, Zhaoxu | Lu, Yong | Wei, Min
As primary anthropogenic emission source of toxic pollutants such as heavy metals and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), municipal solid waste (MSW) incineration has caused worldwide concern. However, a comprehensive analysis of the pollution characteristics and health risks of PCDD/Fs and heavy metals in soils around MSW incineration plants is lacking. In this study, 17 PCDD/Fs and 11 heavy metals in soil samples collected near MSW incineration plants in Sichuan province were investigated to evaluate their pollution characteristics and potential health risk. Sichuan was selected as the study area because the MSW incineration amount in this province ranks first among all inland provinces in China. The PCDD/Fs concentrations ranged from 0.30 to 7.50 ng I-TEQ/kg, which were significantly below risk screening and intervention thresholds. Regarding heavy metals, principal component analysis suggested that Hg, Pb and Zn were the primary metals emitted from the MSW incineration plants. Cluster analysis of PCDD/Fs and heavy metals showed that of PCDD/Fs homologs and heavy metals (e.g., Hg, Pb, Zn and Cd) were clustered into one group, indicating the coexistence and coaccumulation of heavy metals (especially Hg, Pb, Zn, and Cd) and PCDD/Fs in soil. These heavy metals are thus candidate tracers for PCDD/Fs in soil near MSW incineration plants. A health risk analysis found that the carcinogenic and non-carcinogenic risks of PCDD/Fs and heavy metals (except for Ni) in the soil samples were all within acceptable levels. This study provides new insights into correlations and health risks of PCDD/Fs and heavy metals in surface soil near MSW incineration plants. The findings have implications for future studies of environmental and human health risk analysis related to waste incineration.
显示更多 [+] 显示较少 [-]Roles of chlorine and sulphate in MSWIFA in GGBFS binder: Hydration, mechanical properties and stabilization considerations 全文
2021
Ren, Pengfei | Ling, Tung-Chai
In this study, municipal solid waste incineration fly ash (MSWIFA) was first washed (pretreatment) with pure water with liquid to solid (L/S) ratio of 2, 3, 6, 10, to understand the removal efficiency of chlorine and sulphate, as well as its consequent ability as alkaline activator for granulated blast furnace slag (GGBFS). Washed MSWIFA was blended with GGBFS at a fixed ratio of 3:7 to examine their impact on mechanical properties, reaction mechanism, microstructure and leaching behavior. The results showed that chlorine in MSWIFA (>70%) can be washed out easily, while the removal of sulphate was largely depended on the L/S. GGBFS can be better activated by a low L/S (e.g. 2) washed-MSWIFA with attaining the compressive strength of 45.2MPa at 28 days. The higher chlorine and sulphate contents retained in the washed-MSWIFA, the higher the total heat release in the activated GGBFS system. Calcium silicate hydrate (C–S–H), ettringite (AFt) and Friedel’s salt were the main hydration products of the activated binders. The rapid formation of AFt was mainly responsible for the 1-day strength development. Large amounts of Friedel’s salts were formed from 1 day to 3 days associated to the inhibition of sulphate, and the presence of C–S–H played the key role in long-term strength development. The leaching test of heavy metals and soluble ions also demonstrated that washed MSWIFA activated GGBFS binders were harmless to the environment.
显示更多 [+] 显示较少 [-]In situ catalytic reforming of plastic pyrolysis vapors using MSW incineration ashes 全文
2021
Ahamed, Ashiq | Liang, Lili | Chan, Wei Ping | Tan, Preston Choon Kiat | Yip, Nicklaus Tze Xuan | Bobacka, Johan | Veksha, Andrei | Yin, Ke | Lisak, Grzegorz
The valorization of municipal solid waste incineration bottom and fly ashes (IBA and IFA) as catalysts for thermochemical plastic treatment was investigated. As-received, calcined, and Ni-loaded ashes prepared via hydrothermal synthesis were used as low-cost waste-derived catalysts for in-line upgrading of volatile products from plastic pyrolysis. It was found that both IBA and air pollution control IFA (APC) promote selective production of BTEX compounds (i.e., benzene, toluene, ethylbenzene, and xylenes) without significantly affecting the formation of other gaseous and liquid species. There was insignificant change in the product distribution when electrostatic precipitator IFA (ESP) was used, probably due to the lack of active catalytic species. Calcined APC (C-APC) demonstrated further improvement in the BTEX yield that suggested the potential to enhance the catalytic properties of ashes through pre-treatment. By comparing with the leaching limit values stated in the European Council Decision, 2003/33/EC for the acceptance of hazardous waste at landfills, all the ashes applied remained in the same category after the calcination and pyrolysis processes, except the leaching of Cl⁻ from the ESP, which was around the borderline. Therefore, the use of ashes in catalytic reforming application do not significantly deteriorate their metal leaching behavior. Considering its superior catalytic activity towards BTEX formation, C-APC was loaded with Ni at 15 and 30 wt%. The Ni-loading favored an increase in overall oil yield, while reducing the gas yield when compared to the benchmark Ni loaded ZSM catalyst. However, Ni addition also caused the formation of more heavier hydrocarbons (C20–C35) that would require post-treatment to recover favorable products like BTEX.
显示更多 [+] 显示较少 [-]Levels, spatial distribution, and source identification of airborne environmentally persistent free radicals from tree leaves 全文
2020
Environmentally persistent free radicals (EPFRs) are receiving increasing concern due to their toxicity and ubiquity in the environment. To avoid restrictions imposed when using a high-volume active sampler, this study uses tree leaves to act as passive samplers to investigate the spatial distribution characteristics and sources of airborne EPFRs. Tree leaf samples were collected from 120 sites in five areas around China (each approximately 4 km × 4 km). EPFR concentrations in particles (<2 μm) on the surface of 110 leaf samples were detected, ranging from 7.5 × 10¹⁶ to 4.5 × 10¹⁹ spins/g. For the 10 N.D. samples, they were all collected from areas inaccessible by vehicles. The g-values of EPFRs on 68% leaf samples were larger than 2.004, suggesting the electron localized on the oxygen atom, and they were consistent with the road dust sample (g-value: 2.0042). Significant positive correlation was found between concentrations of elemental carbon (tracer of vehicle emissions) and EPFRs. Spatial distribution mapping showed that EPFR levels in various land uses differed noticeably. Although previous work has linked atmospheric EPFRs to waste incineration, the evidence in this study suggests that vehicle emissions, especially from heavy-duty vehicles, are the main sources. While waste incinerators with low emissions or effective dust-control devices might not be an important EPFR contributor. According to our estimation, over 90% of the EPFRs deposited on tree leaves might be attributed to automotive exhaust emissions, as a synergistic effect of primary exhausts and degradation of aromatic compounds in road dust. With adding the trapping agent into the particle samples (<2 μm), signals of hydroxyl radicals were observed. This indicates that EPFRs collected from this phytosampling method can lead to the release of reactive oxygen species (ROS) once they are inhaled by human beings. Thus, this study helps highlight EPFR “hotspots” for potential health risk identification.
显示更多 [+] 显示较少 [-]Plastic smoke aerosol: Nano-sized particle distribution, absorption/fluorescent properties, dysregulation of oxidative processes and synaptic transmission in rat brain nerve terminals 全文
2020
Borysov, Arsenii | Tarasenko, Alla | Krisanova, Natalia | Pozdnyakova, Natalia | Pastukhov, Artem | Dudarenko, Marina | Paliienko, Konstantin | Borisova, Tatiana
Smoke from plastic waste incineration in an open air travels worldwide and is a major source of air pollution particulate matter (PM) that is very withstand to degradation and hazard to human health. Suspension of smoke aerosol components in water occurs during rains and fire extinguishing. Here, water-suspended plastic smoke aerosol (WPS) preparations suitable for biotesting were synthesized. It has been revealed using dynamic light scattering that WPS contained major nano-sized (∼30 nm) PM fraction, and this result was confirmed by electron microscopy. Optical absorption of WPS was in the UV region and an increase in λₑₓ led to a red-shift in fluorescence emission with a corresponding decrease in fluorescence intensity. WPS was analyzed in neurotoxicity studies in vitro using presynaptic rat cortex nerve terminals (synaptosomes). Generation of spontaneous reactive oxygen species (ROS) detected using fluorescent dye 2′,7-dichlorofluorescein in nerve terminals was decreased by WPS (10–50 μg/ml) in a dose-dependent manner. WPS also reduced the H₂O₂-evoked ROS production in synaptosomes, thereby influencing cellular oxidative processes and this effect was similar to that for carbon nanodots. WPS (0.1 mg/ml) decreased the synaptosomal membrane potential and synaptic vesicle acidification in fluorimetric experiments. WPS (1.0 mg/ml) attenuated the synaptosomal transporter-mediated uptake of excitatory and inhibitory neurotransmitters, L-[¹⁴C]glutamate and [³H]GABA, respectively. This can lead to an excessive increase in the glutamate concentration in the synaptic cleft and neurotoxicity via over activation of ionotropic glutamate receptors. Therefore, WPS was neurotoxic and provoked presynaptic malfunction through changes of oxidative activity, reduction of the membrane potential, synaptic vesicle acidification, and transporter-mediated uptake of excitatory and inhibitory neurotransmitters in nerve terminals. In summary, synthesis and emission to the environment of ultrafine PM occur during combustion of plastics, thereby polluting air and water resources, and possibly triggering development of neuropathologies.
显示更多 [+] 显示较少 [-]Comparison of long-term stability under natural ageing between cement solidified and chelator-stabilised MSWI fly ash 全文
2019
Du, Bing | Li, Jiantao | Fang, Wen | Liu, Jianguo
Cement-solidification and chelator-stabilisation of municipal solid waste incineration fly ash (MSWI-FA) are two main treatment techniques to immobilise heavy metals. Differences in the long-term stabilities of those two methods of heavy-metal immobilisation were explored to aid in determining the better MSWI-FA treatment. However, few comparative studies have been conducted on 6-year-old cement-solidified FA (Ce-6-FA) and chelator-stabilised FA (Ch-6-FA). In this study, we compared the physicochemical and heavy metal leaching characteristics of Ce-6-FA and Ch-6-FA. The chemical speciation of heavy metals was modelled using geochemical software to assess long-term stability. The results showed weaker long-term stability in Pb immobilisation under the chelating system. The leaching concentrations of target heavy metals, acetic acid leaching tests, acid neutralising capacity, and pH-dependent leaching results indicated that Ce-6-FA had higher long-term stability than Ch-6-FA. A column experiment indicated that the cumulative release rates of Pb in Ce-6-FA and Ch-6-FA were 2.49% and 4.72%, respectively. The phase-controlled leaching of Pb in Ce-6-FA mainly occurred through Pb2(OH)3Cl and chloropyromorphite (Pb5(PO4)3Cl), whereas that in Ch-6-FA mainly occurred through Pb5(PO4)3Cl. The decomposition of heavy metal chelates in Ch-6-FA and salt generation in this process led to the release of Pb via the inorganic complex.
显示更多 [+] 显示较少 [-]Combined use of daily and hourly data sets for the source apportionment of particulate matter near a waste incinerator plant 全文
2019
Lucarelli, F. | Barrera, V. | Becagli, S. | Chiari, M. | Giannoni, M. | Nava, S. | Traversi, R. | Calzolai, G.
A particulate matter (PM) source apportionment study was carried out in one of the most polluted districts of Tuscany (Italy), close to an old waste incinerator plant. Due to the high PM10 levels, an extensive field campaign was supported by the Regional Government to identify the main PM sources and quantify their contributions. PM10 daily samples were collected for one year and analysed by different techniques to obtain a complete chemical characterisation (elements, ions and carbon fractions). Hourly fine (<2.5 μm) and coarse (2.5–10 μm) aerosol samples were collected by a Streaker sampler for a shorter period and hourly elemental concentrations were obtained by PIXE.Positive Matrix Factorization (PMF) analysis of daily and hourly data allowed the identification of 10 main sources: six anthropogenic (Biomass Burning, Traffic, Secondary Nitrates, Secondary Sulphates, Incinerator, Heavy Oil combustion), two natural (Saharan Dust and Fresh Sea Salt) and two mixed sources (Local Dust and Aged Sea Salt). Biomass burning turned out to be the main source of PM, accounting for 30% of the PM10 mass as annual average, followed by Traffic (18%) and Secondary Nitrates (14%). Emissions from the Incinerator turned out to be only 2% of PM10 mass on average.PM10 composition and source apportionment have been assessed in a polluted area near a waste incinerator, by PMF analysis on daily and hourly compositional data sets.
显示更多 [+] 显示较少 [-]PAHs and PCBs in an Eastern Mediterranean megacity, Istanbul: Their spatial and temporal distributions, air-soil exchange and toxicological effects 全文
2017
Cetin, Banu | Ozturk, Fatma | Keles, Melek | Yurdakul, Sema
Istanbul, one of the mega cities in the world located between Asia and Europe, has suffered from severe air pollution problems due to rapid population growth, traffic and industry. Atmospheric levels of PAHs and PCBs were investigated in Istanbul at 22 sampling sites during four different sampling periods using PUF disk passive air samplers and spatial and temporal variations of these chemicals were determined. Soil samples were also taken at the air sampling sites. At all sites, the average ambient air Σ15PAH and Σ41PCB concentrations were found as 85.6 ± 68.3 ng m−3 and 246 ± 122 pg m−3, respectively. Phenanthrene and anthracene were the predominant PAHs and low molecular weight congeners dominated the PCBs. The PAH concentrations were higher especially at urban sites close to highways. However, the PCBs showed moderately uniform spatial variations. Except four sites, the PAH concentrations were increased with decreasing temperatures during the sampling period, indicating the contributions of combustion sources for residential heating, while PCB concentrations were mostly increased with the temperature, probably due to enhanced volatilization at higher temperatures from their sources. The results of the Factor Analysis represented the impact of traffic, petroleum, coal/biomass and natural gas combustion and medical waste incineration plants on ambient air concentrations. A similar spatial distribution trend was observed in the soil samples. Fugacity ratio results indicated that the source/sink tendency of soil for PAHs and PCBs depends on their volatility and temperature; soil generally acts as a source for lighter PAHs and PCBs particularly in higher temperatures while atmospheric deposition is a main source for higher molecular weight compounds in local soils. Toxicological effect studies also revealed the severity of air and soil pollution especially in terms of PAHs in Istanbul.
显示更多 [+] 显示较少 [-]Mercury risk assessment combining internal and external exposure methods for a population living near a municipal solid waste incinerator 全文
2016
Deng, Chunyan | Xie, Han | Ye, Xuejie | Zhang, Haoran | Liu, Maodian | Tong, Yindong | Ou, Langbo | Yuan, Wen | Zhang, Wei | Wang, Xuejun
Risk assessments for human health have been conducted for municipal solid waste incinerators (MSWIs) in many western countries, whereas only a few risk assessments have been performed for MSWIs in developing countries such as China where the use of waste incineration is increasing rapidly. To assess the mercury exposure risks of a population living near the largest MSWI in South China, we combined internal exposure and external exposure assessment with an individual–specific questionnaire. The mercury concentrations in air, soil, and locally collected food around the MSWI were assessed. The total mercury (T-Hg) and methylmercury (MeHg) of 447 blood samples from a control group, residential exposure group, and MSWI workers were measured. The internal and external exposures of the subject population were analyzed. Significant difference in MeHg concentrations was observed between the control group and the exposed group, between the control group and the MSWI workers, and between the exposed group and the MSWI workers (median levels: 0.70 μg/L, 0.81 μg/L, and 1.02 μg/L for the control group, exposed group, and MSWI workers, respectively). The MeHg/T-Hg ratio was 0.51 ± 0.19, 0.59 ± 0.17 and 0.58 ± 0.25, respectively. Multiple linear regression analysis indicated that MeHg concentrations were positively correlated with the gaseous mercury in the air. Combining internal and external exposure assessment showed that the direct contribution of MSWI emissions was minor compared with the dietary contribution. The external and internal exposures were well matched with each other. This study also suggested that an integrated method combining internal and external exposure assessment with an individual–specific questionnaire is feasible to assess the risks for a population living near a MSWI.
显示更多 [+] 显示较少 [-]