细化搜索
结果 1-10 的 484
Heavy Metals in Sludge Produced from UASB Treatment Plant at Mirzapur, India
2021
Krishna, Vijai | Pandey, Anil Kumar | Gupta, Pankaj Kumar
In Mirzapur (U.P.), a power-starved district, the UASB (Upflow Anaerobic Sludge Blanket) technique was adopted. Almost all of the available technologies do not treat heavy metals, so, is the case with the UASB also. The present study is to assess how much heavy metal can get accumulated in plant tissues in different species. The result of the present study was that the concentration of Pb(1106.31)>Zn(221.45)>Cd(49.26)>Hg(23.37) mg/Kg in the sludge while the concentration of Zn(93.35)>Pb(52.00)>Hg(16.93)>Cd(1.53) mg/Kg in the soil. When the sludge was mixed with the soil the trend got changed and the trend was Pb(596.36)>Zn(219.86)>Cd(24.70)>Hg(22.63) mg/Kg. Three different species that were chosen for the study were Basella Alba (Spinach), Solanum Lycopersicum (Tomato) & Brassica Juncea (Mustard). The trend of accumulation of studied heavy metals in the Brassica Juncea (Mustard) was Zn(85.33)>Pb(25.88)>Hg(11.23)>Cd(0.99) mg/Kg. In Solanum lycopersicum (Tomato) the trend was Pb(231.11)>Zn(108.72)>Hg(12.43)>Cd(9.41) mg/Kg and in Basella alba (Spinach) was Zn(103.81)>Pb(83.90)>Hg(10.78)>Cd(4.18) mg/Kg. Overall the study reveals that the accumulation of heavy metals takes place in plants grown in soil mixed with sewage sludge. The reduction in the concentration of Pb, Cd, Hg and Zn in sludge mixed with soil after the harvesting of plant in case of Solanum lycopersicum were 39.38%, 47.93%, 6.18% and 49.89% respectively; while in case of Basella alba these were 25.23%, 57.53%, 71.58% and 49.16% respectively; and in case of Brassica Juncea these reduction were 25.86%, 60.80%, 70.96% and 49.04% respectively.
显示更多 [+] 显示较少 [-]Synthesis and Photocatlytic Application of Drinking Water Treatment Sludge @ TiO2 Composite for Degradation of Methylene Blue Dye
2020
Rashed, M.N. | El Taher, M. A. | Fadlalla, S. M. M.
Sludge/TiO2 composite was synthesized from drinking water treatment sludge, as a waste material and TiO2 , by a sol- gel method. Various sludge adsorbent / TiO2 ratios (1:1, 1:2 and 2:1 w/w) were prepared, and characterized by transmission electron microscope (TEM), X-ray diffraction (XRD), X-ray Fluorescence (XRF), and BET. The prepared composites were applied successfully for photodegradation of methylene blue (MB) dye from a solution. The photocatalytic degradation of MB dye was investigated using UV irradiation, or UV/H2O2. Initial dye concentration, solution pH, composite dosage, and UV irradiation time were applied to study the optimum conditions for MB degradation. The results revealed the highest MB dye degradation with composite (2:1). It was found that the maximum MB degradation efficiency was at pH=7, 4 h irradiation time, 0.125 g composite dose, and 50 ppm initial dye concentration. MB removal efficiency was 95.7% using UV irradiation, and 99.8% of that using UV/ H2O2. The rate of MB dye degradation followed the first order kinetics. Results from this study offer the best conditions for recycling drinking water treatment sludge, and use it for wastewater treatment.
显示更多 [+] 显示较少 [-]Review on Bioremediation: A Tool to Resurrect the Polluted Rivers
2019
Shishir, T. A. | Mahbub, N. | kamal, N. E.
The term bioremediation describes biological machinery of recycling wastes to make them harmless and useful to some extent. Bioremediation is the most proficient tool to manage the polluted environment and recover contaminated river water. Bioremediation is very much involved in the degradation, eradication, restriction, or reclamation varied chemical and physical hazardous substances from the nearby with the action of all-inclusive microorganisms. The fundamental principle of bioremediation is disintegrating and transmuting pollutants such as hydrocarbons, oil, heavy metal, pesticides and so on. Different microbes like aerobic, anaerobic, fungi and algae are incorporated in bioremediation process. At present, several methods and approaches like bio stimulation, bio augmentation, and monitoring natural recovery are common and functional in different sites around the world for treating contaminated river water. However, all bioremediation procedures it has its own pros and cons due to its own unambiguous application. Above all, utilization of bioremediation paving a minimal inconsiderably contaminated, healthy as well as safe and sound future.
显示更多 [+] 显示较少 [-]Cement Matrix Composition Impact on the Photocatalytic Performance of Immobilized TiO2 Particles over the Fixed Bed photoreactor for Denitrification of Water
2023
Tajasosi, Sama | Shirzad-Siboni, Mehdi | Vagheei, Ramazan | Barandoust, Jalil
Effective denitrification of water using photocatalytic reaction of active TiO2 particles doped with different oxides and metals has been the subject of numerous studies. For a particular research area, the potential of silica bond and its silicate based matrices with titanium dioxide and improving the photocatalytic performance using more economic methods is still challenging, and research in this field is attractive and ongoing. In this study, the effect of cement matrix and its complex bonds with industrial grade TiO2 particles was evaluated on the rate of water denitrification in a fixed bed circulating flow photoreactor. For this purpose, silica fume was substituted for cement in constant percent of 10 as a rich source of amorphous silica. Industrial grade TiO2 was added to the mix as5, 10 and 15 percent weight of cementitious materials (CM). Nano TiO2 was considered as a supplementary photocatalytic material with a constant 1% weight of CM in two mix designs. The results implied that the addition of 5% TiO2 increased the rate of nitrate concentration reduction by up to 10 times. Also, the specimen including 10% TiO2 increased denitrification rate by 107% compared to the previous content, which had much less impact. Also, the addition of nanoTiO2 increased denitrification rate up 113%.
显示更多 [+] 显示较少 [-]Optimization of Crystal Violet Adsorption by Chemically Modified Potato Starch Using Response Surface Methodology
2020
Bahrami, M. | Amiri, M. J. | Bagheri, F.
In this research, a response surface methodology (RSM) was used to investigate the effects of independent parameters (pH, contact time, temperature, adsorbent dosage, and initial concentration of pollutant), their simultaneous interactions, and quadratic effects on crystal violet adsorption onto two starch based materials in the form of batch experiments. The characterizing results indicated that there is no significant difference between the potato starch and synthesized starch phosphate, as phosphorylation has not changed the crystalline structure of starch inside the granules. The maximum removal efficiency of crystal violet ions was obtained 99 % at the optimum adsorption conditions of initial concentration 213.54 mg/L, adsorbent dosage 0.25 g, contact time 14.99 min, temperature 15 °C, and initial pH of solution 9. RSM outputs showed that the maximum adsorption of crystal violet ions by could be achieved by raising pH and adsorbent dosage, and decreasing the initial crystal violet concentration. While temperature and contact time are not effective parameters in crystal violet removal from aqueous solutions using synthesized starch phosphate. Generally, the RSM model is suitable to optimize the experiments for dye elimination by adsorption, where the modified starch phosphate would be an effective adsorbent for treating crystal violet solution.
显示更多 [+] 显示较少 [-]Investigation of effective parameters on the performance of NF membrane in simultaneous removal of Cr (VI) and Cu from contaminated water
2017
Aghaei, Fatemeh | Jalilzadeh Yengejeh, Reza
The present study investigates an NF process for removal of copper and hexavalent chromium, studying the effect of pH (5, 7, 9) as well as contaminants' concentration (50, 500, 5000 µg/L) at a constant pressure of 8 bar; with the recovery rate, regulated at 75±2%. To determine the main factors, affecting the system performance, and evaluate the interaction effects among the factors, the experiment is designed via RSM Method. The chrome shows a higher rejection, compared with Copper, all over the range of investigated factors. As Copper concentration grows, Cu removal efficiency drops while, the Cr (VI) removal efficiency ascends. Also by increasing chrome concentration, the Cu removal efficiency decreases, while Cr (VI) removal efficiency increases. Results show that with an increase in pH, the Cu removal drops and Cr removal is increased. The pH is the main parameter, influencing the removal rate. It has been found that the maximum removal efficiency is up to 99% and 73% for Cr (VI) and Cu, respectively. There is an adequate agreement between real data and that obtained from the models (R2 was found to be 0.9889 and 0.9664, for Cu and Cr (VI) rejection, respectively).
显示更多 [+] 显示较少 [-]Long-distance transport of per- and polyfluoroalkyl substances (PFAS) in a Swedish drinking water aquifer
2022
Sörengård, Mattias | Bergström, Sofia | McCleaf, Philip | Wiberg, Karin | Ahrens, Lutz
Use of per- and polyfluoroalkyl substance (PFAS)-containing aqueous film-forming foams (AFFF) at firefighting training sites (FFTS) has been linked to PFAS contamination of drinking water. This study investigated PFAS transport and distribution in an urban groundwater aquifer used for drinking water production that has been affected by PFAS-containing AFFF. Soil, sediment, surface water and drinking water were sampled. In soil (n = 12) at a FFTS with high perfluorooctane sulfonate (PFOS) content (87% of ∑PFAS), the ∑PFAS concentration (n = 26) ranged from below detection limit to 560 ng g⁻¹ dry weight. In groundwater (n = 28), the ∑PFAS concentration near a military airbase FFTS reached 1000 ng L⁻¹. Principal component analysis (PCA) identified the military FFTS as the main source of PFAS contamination in drinking water wellfields >10 km down-gradient. Groundwater samples taken close to the military FFTS site showed no ∑PFAS concentration change between 2013 and 2021, while a location further down-gradient showed a transitory 99.6% decrease. Correlation analysis on PFAS composition profile indicated that this decrease was likely caused by dilution from an adjacent conflating aquifer. ∑PFAS concentration reached 15 ng L⁻¹ (PFOS 47% and PFHxS 41% of ∑PFAS) in surface river water (n = 6) and ranged between 1 ng L⁻¹ and 8 ng L⁻¹ (PFHxS 73% and PFBS 17% of ∑PFAS) in drinking water (n = 4). Drinking water had lower PFAS concentrations than the wellfields due to PFAS removal at the water treatment plant. This demonstrates the importance of monitoring PFAS concentrations throughout a groundwater aquifer, to better understand variations in transport from contamination sources and resulting impacts on PFAS concentrations in drinking water extraction areas.
显示更多 [+] 显示较少 [-]Comparative analysis of antibiotic resistance genes on a pig farm and its neighboring fish ponds in a lakeside district
2022
Fu, Chenxi | Ding, Huijun | Zhang, Qianqian | Song, Yaqiong | Wei, Yuguang | Wang, Yao | Wang, Boming | Guo, Jiaxuan | Qiao, Min
Antibiotics usage in animal production is considered a primary driver of the occurrence, supply and spread of antibiotic resistance genes (ARGs) in the environment. Pig farms and fish ponds are important breeding systems in food animal production. In this study, we compared and analyzed broad ARGs profiles, mobile genetic elements (MGEs) and bacterial communities in a representative pig farm and neighboring fish ponds around Poyang Lake, the largest freshwater lake in China. The factors influencing the distribution of ARGs were also explored. The results showed widespread detection of ARGs (from 57 to 110) among 283 targeted ARGs in the collected water samples. The differences in the number and relative abundance of ARGs observed from the pig farm and neighboring fish ponds revealed that ARG contamination was more serious on the pig farm than in the fish ponds and that the water treatment plant on the pig farm was not very effective. Based on the variance partition analysis (VPA), MGEs, bacterial communities and water quality indicators (WIs) codrive the relative abundance of ARGs. Based on network analysis, we found that total phosphorus and Tp614 were the most important WIs and MGEs affecting ARG abundance, respectively. Our findings provide fundamental data on farms in lakeside districts and provide insights into establishing standards for the discharge of aquaculture wastewater.
显示更多 [+] 显示较少 [-]Microplastics profile in constructed wetlands: Distribution, retention and implications
2022
Lu, Hsuan-Cheng | Ziajahromi, Shima | Locke, Ashley | Neale, Peta A. | Leusch, Frederic D.L.
Wastewater and stormwater are both considered as critical pathways contributing microplastics (MPs) to the aquatic environment. However, there is little information in the literature about the potential influence of constructed wetlands (CWs), a commonly used wastewater and stormwater treatment system. This study was conducted to investigate the abundance and distribution of MPs in water and sediment at five CWs with different influent sources, namely stormwater and wastewater. The MP abundance in the water samples ranged between 0.4 ± 0.3 and 3.8 ± 2.3 MP/L at the inlet and from 0.1 ± 0.0 to 1.3 ± 1.0 MP/L at the outlet. In the sediment, abundance of MPs was generally higher at the inlet, ranging from 736 ± 335 to 3480 ± 4330 MP/kg dry sediment and decreased to between 19.0 ± 16.4 and 1060 ± 326 MP/kg dry sediment at the outlet. Although no significant differences were observed in sediment cores at different depth across the five CWs, more MPs were recorded in silt compared to sandy sediment which indicated sediment grain size could be an environmental factor contributing to the distribution of MPs. Polyethylene terephthalate (PET) fibres were the dominant polymer type found in the water samples while polyethylene (PE) and polypropylene (PP) fragments were predominantly recorded in the sediment. While the size of MPs in water varied across the studied CWs, between 51% and 64% of MPs in the sediment were smaller than 300 μm, which raises concerns about the bioavailability of MPs to a wider range of wetland biota and their potential ecotoxicological effects. This study shows that CWs can not only retain MPs in the treated water, but also become sinks accumulating MPs over time.
显示更多 [+] 显示较少 [-]Mesoporous cellulose-chitosan composite hydrogel fabricated via the co-dissolution-regeneration process as biosorbent of heavy metals
2021
Yang, Shujin | Liao, Y. | Karthikeyan, K.G. | Pan, X.J.
Developing low-cost and high-performance biosorbent for water purification continues drawing more and more attention. In this study, cellulose-chitosan composite hydrogels were fabricated via a co-dissolution and regeneration process using a molten salt hydrate (a 60 wt% aqueous solution of LiBr) as a solvent. The addition of chitosan not only introduced functionality for metal adsorption but also increased the specific surface area and improved the mechanical strength of the composite hydrogel, compared to pure cellulose hydrogel. Batch adsorption experiments indicated that the composite hydrogel with 37% cellulose and 63% chitosan exhibited an adsorption capacity of 94.3 mg/g (1.49 mmol/g) toward Cu²⁺ at 23 °C, pH 5, and initial metal concentration of 1500 mg/L, which was 10 times greater than the adsorption capacity of pure cellulose hydrogel. Competitive adsorption from a mixed metals solution revealed that the cellulose-chitosan composite hydrogel exhibited selective adsorption of the metals in the order of Cu²⁺ > Zn²⁺ > Co²⁺. This study successfully demonstrated an innovative method to fabricate biosorbents from abundant and renewable natural polymers (cellulose and chitosan) for removing metal ions from water.
显示更多 [+] 显示较少 [-]