细化搜索
结果 1-10 的 13
A novel clean production approach to utilize crop waste residues as co-diet for mealworm (Tenebrio molitor) biomass production with biochar as byproduct for heavy metal removal
2019
Yang, Shanshan | Chen, Yi-di | Zhang, Ye | Zhou, Hui-Min | Ji, Xin-Yu | He, Lei | Xing, De-Feng | Ren, Nan-Qi | Ho, Shih-Hsin | Wu, Weimin
Proper management of waste crop residues has been an environmental concern for years. Yellow mealworms (larvae of Tenebrio molitor Linnaeus, 1758) are major insect protein source. In comparison with normal feed wheat bran (WB), we tested five common lignocellulose-rich crop residues as feedstock to rear mealworms, including wheat straw (WS), rice straw (RS), rice bran (RB), rice husk (RH), and corn straw (CS). We then used egested frass for the production of biochar in order to achieve clean production. Except for WS and RH, the crop residues supported mealworms’ life activity and growth with consumption of the residues by 90% or higher and degraded lignin, hemicellulose and cellulose over 32 day period. The sequence of degradability of the feedstocks is RS > RB > CS > WS > RH. Egested frass was converted to biochar which was tested for metal removal including Pb(II), Cd(II), Cu(II), Zn(II), and Cr(VI). Biochar via pyrolysis at 600 °C from RS fed frass (FRSBC) showed the best adsorption performance. The adsorption isotherm fits the Langmuir model, and kinetic analysis fits the Pseudo-Second Order Reaction. The heavy metal adsorption process was well-described using the Intra-Particle Diffusion model. Complexation, cation exchange, precipitation, reduction, deposition, and chelation dominated the adsorption of the metals onto FRSBC. The results indicated that crop residues (WS, RS, RB, and CS) can be utilized as supplementary feedstock along with biochar generated from egested frass to rear mealworms and achieve clean production while generating high-quality bioadsorbent for environment remediation and soil conditioning.
显示更多 [+] 显示较少 [-]Sorption of Se(IV) from aqueous solution by wheat bran-hydroxyapatite (HA) composite
2021
Li, Zhijian | Zhang, Tong | Li, Haifeng
Natural biocompatible material is promising candidate for selenite sorption from water since it allows to reuse selenium while dispose of waste materials. In this study, innovative wheat bran-hydroxyapatite (HA) composite was prepared by in situ precipitation method. Scanning electronic microscopy (SEM) and X-ray diffraction (XRD) revealed that the hydroxyapatite aggregated in the fiber matrix of the wheat bran. The results of batch sorption experiments including sorption kinetics, isotherms, and the effect of solution pH showed that the sorption of Se(IV) on the wheat bran-HA adsorbent was fast, endothermic, and pH-independent in the range from 5.0 to 7.0. Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) analysis suggested that interaction occurred between Se(IV) and the hydroxyl groups on the composite. Column studies showed that wheat bran-HA composite was suitable to be utilized for continuous Se(IV) removal. The wheat bran-HA composite has a potential application for Se(IV) removal in water treatment.
显示更多 [+] 显示较少 [-]Salt sealing induced in situ N-doped porous carbon derived from wheat bran for the removal of doxycycline from aqueous solution
2022
Liang, Linlin | Niu, Xinyong | Han, Xiuli | Chang, Chun | Chen, Junying
In situ N-doped porous carbon (NPC) derived from wheat bran via a convenient salt sealing and air-assisted strategy was prepared for the removal of doxycycline (DOX) from aqueous solution. The NPC was precisely characterized by SEM, FTIR, XPS and BET analysis. Additionally, the experimental variables including contact time, adsorbent dosage of NPC and pH were optimized by using Box–Behnken design (BBD) under response surface methodology (RSM). The predicted adsorption capacity of DOX was found to be 291.14 mg g⁻¹ under optimalizing experimental conditions of 196 min contact time, 0.2 g L⁻¹ adsorbent dosage and pH 5.78. The adsorption experimental data fitted Langmuir, Koble-Corrigan and Redlich-Peterson models well, and the pseudo-second-order model perfectly described the DOX adsorption process onto NPC. Thermodynamic parameters of DOX adsorbed onto NPC indicated that the adsorption process was spontaneous and endothermic. Moreover, the adsorption of DOX on NPC was mostly controlled by electrostatic interaction, π-π electron–donator–acceptor (EDA) interaction, hydrogen-bonding and Lewis acid–base effect. Besides, the N element of NPC also played a role in capturing DOX. The maximum monolayer adsorption capacity of DOX was turn out to be 333.23 mg g⁻¹ at 298 K, which suggested that the NPC could be a prospectively adsorbent for the removal of DOX from wastewater.
显示更多 [+] 显示较少 [-]Efficient biotransformation of sulfide in anaerobic sequencing batch reactor by composite microbial agent: performance optimization and microbial community analysis
2021
Liu, Huan | Dai, Luyao | Yao, Jiachao | Mei, Yu | Hrynsphan, Dzmitry | Tatsiana, Savitskaya | Chen, Jun
Sulfur-containing wastewater is very common as an industrial waste, yet a high-efficiency composite microbial agent for sulfur-containing wastewater treatment is still lacking. In this work, three novel and efficient desulfurizing bacteria were isolated from the sewage treatment tank of Zhejiang Satellite Energy Co., Ltd. They were identified as Brucella melitensis (S1), Ochrobactrum oryzae (S8), and Achromobacter xylosoxidans (S9). These three strains of bacteria were responsible for the oxidative metabolism of sodium sulfide via a similar polythionate pathway, which could be expressed as follows: S²⁻→S₂O₃²⁻/S⁰→SO₃²⁻→SO₄²⁻. Activated carbon, wheat bran, and diatomite at 1:1:1 ratio are used as carriers to construct a composite microbial agent containing the three bacteria. The desulfurization efficiency of 95% was predicted by response surface methodology under the following optimum conditions: the dosage of the inoculum was 3 g/L, pH 7.86, and temperature of 39 °C. Additionally, the impact resistance was studied in the anaerobic sequencing batch reactor. The removal capacity of microbial agent reached 98%. High-throughput analysis showed that composite microbial agent increased bacterial evenness and diversity, and the relative abundance of Brucellaceae increased from 5.04 to 8.79% in the reactor. In the process of industrial wastewater transformation, the transformation rate of sulfide by composite microbial agent was maintained between 70 and 81%. The composite microbial agent had potential for the treatment of sulfur-containing wastewater.
显示更多 [+] 显示较少 [-]Molecular Docking of Laccase Protein from Bacillus Safensis DSKK5 Isolated from Earthworm gut: A Novel Method to Study dye Decolorization Potential
2014
Singh, Deepti | Sharma, Krishna Kant | Jacob, Shenu | Gakhar, S. K.
The bacterial communities in the intestinal tracts of earthworm were isolated by culture-dependent approaches. In total, 72 cultures were isolated and purified from the gut of an earthworm under aerobic culture condition, out of which 25 isolates were laccase positive. Isolate 33, a good laccase producer was identified as Bacillus safensis DSKK5, using both biochemical and molecular approaches. It was found to produce maximum laccase activity at 0.75 % of wheat bran, 37 °C, and pH 6.2. Further, copper sulfate and copper chloride showed a maximum laccase production. In order to understand the affinity of binding and interaction between toxic dyes and bacterial laccase, homology models were generated. The resulted models were further validated and used for docking studies with commonly used industrial dyes. Molecular docking using CCDC GOLD software gave a good score with all the textile dyes. Further, validation using molsoft ICM software showed a good binding energy of −104.25, −106.00, −113.98, and −100.36, with commercial dyes, i.e., procion blue, procion green, procion red, and reactive yellow 86, respectively. Experimental data showed a maximum decolorization with procion green (85.66 %) and procion red (85.58 %), which validate the molsoft ICM results, i.e., −106.00 and −113.98, respectively.
显示更多 [+] 显示较少 [-]Rapid Removal of Heavy Metal Cations by Novel Nanocomposite Hydrogels Based on Wheat Bran and Clinoptilolite: Kinetics, Thermodynamics, and Isotherms
2014
Barati, Aboulfazl | Moghadam, Elham Abdollahi | Miri, Taghi | Asgari, Mahdieh
Novel nanocomposite hydrogels based on wheat bran-g-poly(methacrylic acid) and nano-sized clinoptilolite have been successfully utilized for the removal of Pb(II), Cu(II), Cd(II), and Ni(II) cations from their aqueous solution. The experimental results were investigated using Freundlich, Langmuir, Temkin, and Dubinin–Radushkevich isotherm models. The pseudo-first-order, pseudo-second-order and interparticle diffusion kinetic models were studied in order to analyze the kinetic data. The kinetic data indicated that the rate of cation adsorption on nanocomposite hydrogels was fast that more than 80 % of the equilibrium adsorption capacity occurs within 15 min. The maximum monolayer adsorption capacity of the nanocomposite hydrogel, as obtained from the Langmuir adsorption isotherm, was found to be 166.7, 243.9, 175.4, and 166.6 mg g⁻¹ for Pb(II), Cu(II), Cd(II), and Ni(II), respectively. Thermodynamic parameters such as free energy (ΔG ⁰), enthalpy (ΔH ⁰), and entropy (ΔS ⁰) change were determined; the sorption process was found to be endothermic. The results of five times sequential adsorption–desorption cycle showed high adsorption efficiency and a good degree of desorption.
显示更多 [+] 显示较少 [-]The Production of Ligninolytic Enzymes by Marine-Derived Basidiomycetes and Their Biotechnological Potential in the Biodegradation of Recalcitrant Pollutants and the Treatment of Textile Effluents
2012
Bonugli-Santos, Rafaella C. | Durrant, Lucia Regina | Sette, Lara Durães
Filamentous fungi derived from marine environments are well known as a potential genetic resource for various biotechnological applications. Although terrestrial fungi have been reported to be highly efficient in the remediation of xenobiotic pollutants, fungi isolated from the marine environment may possess biological advantages over terrestrial fungi because of their adaptations to high salinity and pH extremes. The present study describes the production of ligninolytic enzymes under saline and non-saline conditions and the decolorization of Remazol Brilliant Blue R (RBBR) dye by three basidiomycetes recovered from marine sponges (Tinctoporellus sp. CBMAI 1061, Marasmiellus sp. CBMAI 1062, and Peniophora sp. CBMAI 1063). Ligninolytic enzymes were primarily produced by these fungi in a salt-free malt extract and malt extract formulated with artificial seawater (saline condition). CuSO₄ and wheat bran were the best inducers of lignin peroxidase and manganese peroxidase activity. RBBR was decolorized up to 100% by the three fungi, and Tinctoporellus sp. CBMAI 1061 was the most efficient. Our results revealed the biotechnological potential of marine-derived basidiomycetes for dye decolorization and the treatment of colored effluent as well as for the degradation of other organopollutants by ligninolytic enzymes in non-saline and saline conditions that resemble the marine environment.
显示更多 [+] 显示较少 [-]Resistance of black soldier fly (Diptera: Stratiomyidae) larvae to combined heavy metals and potential application in municipal sewage sludge treatment
2018
Cai, Minmin | Hu, Ruiqi | Zhang, Ke | Ma, Shiteng | Zheng, Longyu | Yu, Ziniu | Zhang, Jibin
Treating municipal sewage sludge (MSS) sustainably and economically in China remains a challenge because of risks associated with the heavy metals it contains. In this study, black solider fly larvae (BSFL) were used for MSS treatment. The resistance of larvae to combined heavy metals and their potential use in conversion of MSS were investigated. The results indicated that seven MSS samples contained large amounts of heavy metals, with the lead and nickel contents of several samples exceeding Chinese national discharge standards. BSFL were highly tolerant to an artificial diet spiked with combined heavy metals. Principal component analysis revealed that high concentrations of lead, nickel, boron, and mercury potentially interfered with larval weight gain, while zinc, copper, chromium, cadmium, and mercury slightly reduced larval survival. The addition of chicken manure and wheat bran as co-substrates improved the conversion process, which was influenced by the nature and amount of added co-substrate and especially the quantity of nitrogen added. With the amended substrate, the BSFL accumulated heavy metals into their bodies but not into extracted larval oil. The heavy metal content of the treatment residue was lower than that considered safe for organic-inorganic compound fertilizers standards in China and the harvested larvae could be used as a source of oil for industrial application.
显示更多 [+] 显示较少 [-]Preparation and application of unhairing enzyme using solid wastes from the leather industry—an attempt toward internalization of solid wastes within the leather industry
2018
Ramesh, RenganathRao | Muralidharan, Vimudha | Palanivel, Saravanan
Usage of the animal fleshing waste as the source of carbon and nitrogen for animal skin unhairing protease (EC 3.4.21) production along with agro-industrial wastes like wheat bran has been investigated. Thermal hydrolysis of delimed fleshing waste for 3 h yielded a fleshing hydrolysate (FH) having a protein content of 20.86 mg/mL and total solids of 46,600 ppm. The FH was lyophilized and spray dried to obtain fleshing hydrolysate powder (FHP) to be used along with wheat bran and rice bran for protease production. The carbon, nitrogen, hydrogen, and sulfur contents of the FHP were found to be 40.1, 13.8, 5.4, and 0.2%. The control solid-state fermented (SSF) medium without FHP showed a maximum activity of only 550 U/g. A maximum protease activity of 956 U/g was obtained by using 6% FHP (taken based on the combined total weight of wheat bran and rice bran) after 96 h of fermentation, resulting in a 1.7-fold increase in the protease activity. The total cost of producing 1 kg of FHP and the cost of producing 1000 kU of protease using FHP along with wheat bran and rice bran were found to be USD 24.62 and USD 2.08, respectively; 25% of SSF protease along with 40% water was found to be capable of unhairing the sheepskins in 7 h eliminating the hazardous conventional lime sulfide unhairing system. Thus, the leather industry’s solid waste internalized for the production of unhairing enzyme resulted in a sustainable solution for pollution problems. Graphical abstract ᅟ
显示更多 [+] 显示较少 [-]Effects of alkaloid extracts of mesquite pod on the products of in vitro rumen fermentation
2017
de Jesus Pereira, Taiala Cristina | Pereira, Mara Lúcia Albuquerque | Moreira, Jeruzia Vitória | Azevêdo, José Augusto Gomes | Batista, Ronan | de Paula, Vanderlúcia Fonseca | Oliveira, Brena Santos | de Jesus dos Santos, Edileusa
The objective of this study was to evaluate the effects of alkaloid extracts of Prosopis juliflora (Sw.) D.C. pods obtained by two extraction methods as compared with sodium monensin on the gas production kinetic, mitigation of methane, and rumen fermentation products using wheat bran or Tifton 85 hay as substrates, by the semi-automatic in vitro gas production technique. A completely randomized design was adopted, and two natural additives were tested made from mesquite pod (alkaloid extract I and alkaloid extract II) at three levels (3.9, 7.9, and 12 μg), sodium monensin 5 μM (positive control), and no inclusion of additives (negative control). The volume of gases produced by the degradation of the fibrous fraction of wheat bran was influenced by the concentration of the extract I added to the medium, and the amounts of 7.9 and 12 μg were equal to monensin at the lowest value. The degradation rate of the fibrous carbohydrates with additive extract I at 12 μg was lower in relation to monensin. When Tifton 85 hay was utilized, alkaloid extract I provided a shorter colonization time as compared with monensin at the added amounts of 7.9 and 12 μg and higher production of gases from the fibrous fraction but without interfering with the total volume of gases produced during 96 h of fermentation of carbohydrates. In the periods of 12 and 24 h of incubation, utilizing alkaloid extract I, the mean values of methane production with wheat bran and Tifton 85 hay were lower than monensin (p < 0.05) when the respective amounts of 7.9 and 12 μg were added. Alkaloid extract I has similar potential to sodium in reducing production of total gases, methane, and the acetate/propionate ratio.
显示更多 [+] 显示较少 [-]