细化搜索
结果 1-10 的 340
Division and retention of floating plastic at river bifurcations
2024
van Thi, Khoa L. | van Emmerik, Tim H.M. | Vermeulen, Bart | Pham, Nhan Q. | Hoitink, A.J.F.
The transport of floating macroplastics (>2.5 cm) can be impacted by variations in hydrometeorological forcing. Several studies have demonstrated that river discharge, wind, and tides can either accelerate or impede the downstream travel path of plastic. However, there remains a substantial gap in our understanding of the impact of river geomorphological complexity on this process. In this context, the role that river bifurcations play in driving plastic dynamics under different hydrometeorological conditions is largely unexplored. Here, we show that specific plastic item categories react differently to the transport drivers, and bifurcation areas can function both as a retention and release site of plastic litter. We found that hard polyolefin appears to be the most responsive plastic to changes in flow discharge (ρ≈0.40, p≈0.01). Absolute wind velocity magnitude does not correlate to plastic transport. We explored correlations of the various plastic items types with wind vector components in all directions. Multilayer plastics correlated highest to the wind vector component that is most effective in driving plastics from an urban area to the river (ρ≈0.57, p≈0.0001). On a monthly scale, the bifurcation area retained up to 50% of the incoming upstream plastic flux. At other times, an additional 30% was released in the same area. Our results demonstrate how bifurcations distribute different plastic items types downstream under varied hydrometeorological conditions. These yields underscore the importance of assessing floating plastic transport in specific plastic item categories and taking river geomorphological complexity into account.
显示更多 [+] 显示较少 [-]Combining Himawari-8 AOD and deep forest model to obtain city-level distribution of PM2.5 in China
2022
Song, Zhihao | Chen, Bin | Huang, Jianping
PM₂.₅ (fine particulate matter with aerodynamics diameter <2.5 μm) is the most important component of air pollutants, and has a significant impact on the atmospheric environment and human health. Using satellite remote sensing aerosol optical depth (AOD) to explore the hourly ground PM₂.₅ distribution is very helpful for PM₂.₅ pollution control. In this study, Himawari-8 AOD, meteorological factors, geographic information, and a new deep forest model were used to construct an AOD-PM₂.₅ estimation model in China. Hourly cross-validation results indicated that estimated PM₂.₅ values were consistent with the site observation values, with an R² range of 0.82–0.91 and root mean square error (RMSE) of 8.79–14.72 μg/m³, among which the model performance reached the optimum value between 13:00 and 15:00 Beijing time (R² > 0.9). Analysis of the correlation coefficient between important features and PM₂.₅ showed that the model performance was related to AOD and affected by meteorological factors, particularly the boundary layer height. Deep forest can detect diurnal variations in pollutant concentrations, which were higher in the morning, peaked at 10:00–11:00, and then began to decline. High-resolution PM₂.₅ concentrations derived from the deep forest model revealed that some cities in China are seriously polluted, such as Xi ‘an, Wuhan, and Chengdu. Our model can also capture the direction of PM₂.₅, which conforms to the wind field. The results indicated that due to the combined effect of wind and mountains, some areas in China experience PM₂.₅ pollution accumulation during spring and winter. We need to be vigilant because these areas with high PM₂.₅ concentrations typically occur near cities.
显示更多 [+] 显示较少 [-]Microplastic pollution in fragile coastal ecosystems with special reference to the X-Press Pearl maritime disaster, southeast coast of India
2022
Karthik, R. | Robin, R.S. | Purvaja, R. | Karthikeyan, V. | Subbareddy, B. | Balachandar, K. | Hariharan, G. | Ganguly, D. | Samuel, V.D. | Jinoj, T.P.S. | Ramesh, R.
Microplastics (MPs) are a global environmental concern and pose a serious threat to marine ecosystems. This study aimed to determine the abundance and distribution of MPs in beach sediments (12 beaches), marine biota (6 beaches) and the influence of microbes on MPs degradation in eco-sensitive Palk Bay and Gulf of Mannar coast. The mean MP abundance 65.4 ± 39.8 particles/m² in beach sediments; 0.19 ± 1.3 particles/individual fish and 0.22 ± 0.11 particles g⁻¹ wet weight in barnacles. Polyethylene fragments (33.4%) and fibres (48%) were the most abundant MPs identified in sediments and finfish, respectively. Histopathological examination of fish has revealed health consequences such as respiratory system damage, epithelial degradation and enterocyte vacuolization. In addition, eight bacterial and seventeen fungal strains were isolated from the beached MPs. The results also indicated weathering of MPs due to microbial interactions. Model simulations helped in tracking the fate and transboundary landfall of spilled MPs across the Indian Ocean coastline after the X-Press Pearl disaster. Due to regional circulations induced by the monsoonal wind fields, a potential dispersal of pellets has occurred along the coast of Sri Lanka, but no landfall and ecological damage are predicted along the coast of India.
显示更多 [+] 显示较少 [-]Commercial cuttlefish exposed to noise from offshore windmill construction show short-range acoustic trauma
2022
Solé, Marta | De Vreese, Steffen | Fortuño, José-Manuel | van der Schaar, Mike | Sánchez, Antonio M. | André, Michel
The installation of marine renewable energy devices (MREDs, wind turbines and converters of wave, tidal and ocean thermal energy) has increased quickly in the last decade. There is a lack of knowledge concerning the effects of MREDs on benthic invertebrates that live in contact with the seabed. The European common cuttlefish (Sepia officinalis) is the most abundant cephalopod in the Northeast Atlantic and one of the three most valuable resources for English Channel fisheries. A project to build an offshore wind farm in the French bay of Saint-Brieuc, near the English Channel, raised concern about the possible acoustic impact on local cuttlefish communities. In this study, consisting of six exposure experiments, three types of noise were considered: 3 levels of pile-driving and 3 levels of drilling. The objectives were to assess possible associated changes in hatching and larva survival, and behavioural and ultrastructural effects on sensory organs of all life stages of S. officinalis populations. After exposure, damage was observed in the statocyst sensory epithelia (hair cell extrusion) in adults compared to controls, and no anti-predator reaction was observed. The exposed larvae showed a decreased survival rate with an increasing received sound level when they were exposed to maximum pile-driving and drilling sound levels (170 dB re 1 μPa² and 167 dB re 1 μPa², respectively). However, sound pressure levels's lower than 163 dB re 1 μPa² were not found to elicit severe damage. Simulating a scenario of immobile organisms, eggs were exposed to a combination of both pile driving and drilling as they would be exposed to all operations without a chance to escape. In this scenario a decrease of hatching success was observed with increasing received sound levels.
显示更多 [+] 显示较少 [-]PAHs in an urban-industrial area: The role of lichen transplants in the detection of local and study area scale patterns
2021
Lucadamo, L. | Gallo, L. | Corapi, A.
Spatial variation of the levels of polycyclic aromatic hydrocarbons (PAHs) was evaluated within an urban-industrial district where the main anthropogenic pressures are a 15 MW biomass power plant (BPP) and road traffic. The use of a high-density lichen transplant network and wind quantitative relationships made it possible to perform a hierarchical analysis of contamination. Combined uni-bi and multivariate statistical analyses of the resulting databases revealed a dual pattern. In its surroundings (local scale), the BPP affected the bioaccumulation of fluoranthene, pyrene and total PAHs, although a confounding effect of traffic (mostly petrol/gasoline engines) was evident. Spatial variation of the rate of diesel vehicles showed a significant association with that of acenaphthylene, acenaphthene, fluorene, anthracene and naphthalene. The series of high-speed wind values suggests that wind promotes diffusion rather than dispersion of the monitored PAHs. At the whole study area scale, the BPP was a source of acenaphthylene and acenaphthene, while diesel vehicles were a source of acenaphthylene. PAHs contamination strongly promotes oxidative stress (a threefold increase vs pre-exposure levels) in lichen transplants, suggesting a marked polluting effect of anthropogenic sources especially at the expense of the mycobiont. The proposed monitoring approach could improve the apportionment of the different contributions of point and linear anthropogenic sources of PAHs, mitigating the reciprocal biases affecting their spatial patterns.
显示更多 [+] 显示较少 [-]Modelling impacts of water diversion on water quality in an urban artificial lake
2021
Yang, Haiyan | Wang, Jiaqi | Li, Jiuhao | Zhou, Haolan | Liu, Zhenhuan
As an important form of urban water resource, urban artificial lakes are severely affected by rapid urbanization and interference from human activities. These small lakes are characterized by their unique irregular shape, fragile ecosystem, and relatively closed, stagnant waterbodies. However, few studies have focused on their hydrodynamics and water quality, in particular the restoration methods and mechanisms remaining unclear. The present study applied the MIKE 21 FM model to investigate the effects of water diversion on water quality in a typical urban artificial lake. By considering different flow arrangements, several model scenarios were set up to predict the impacts of water diversion on selected water quality parameter. The results showed that the effectiveness of water diversion was directly related to flow velocity, the relative position to the fresh water inlet, the amount and quality of fresh water and water remaining to be diluted, and the circulation direction of flow field. The inflow–outflow arrangement was the primary factor determining the flow field and NH₃–N variation trends across the lake, and an increased discharge exhibited unequal effects in individual zones. Wind was also important for the formation of flow circulation and pollutant variation. Methods were proposed for enhancing water quality in urban small-scale lakes, including changing the way diversion projects are managed, improving the quality of diverted flow, enhancing flow fluidity, or utilizing wind effects and local topography.
显示更多 [+] 显示较少 [-]Enabling a large-scale assessment of litter along Saudi Arabian red sea shores by combining drones and machine learning
2021
Martin, Cecilia | Zhang, Qiannan | Zhai, Dongjun | Zhang, Xiangliang | Duarte, Carlos M.
Beach litter assessments rely on time inefficient and high human cost protocols, mining the attainment of global beach litter estimates. Here we show the application of an emerging technique, the use of drones for acquisition of high-resolution beach images coupled with machine learning for their automatic processing, aimed at achieving the first national-scale beach litter survey completed by only one operator. The aerial survey had a time efficiency of 570 ± 40 m² min⁻¹ and the machine learning reached a mean (±SE) detection sensitivity of 59 ± 3% with high resolution images. The resulting mean (±SE) litter density on Saudi Arabian shores of the Red Sea is of 0.12 ± 0.02 litter items m⁻², distributed independently of the population density in the area around the sampling station. Instead, accumulation of litter depended on the exposure of the beach to the prevailing wind and litter composition differed between islands and the main shore, where recreational activities are the major source of anthropogenic debris.
显示更多 [+] 显示较少 [-]An echosounder view on the potential effects of impulsive noise pollution on pelagic fish around windfarms in the North Sea
2021
Kok, Annebelle C.M. | Bruil, Lisa | Berges, Benoit | Sakinan, Serdar | Debusschere, Elisabeth | Reubens, Jan | de Haan, Dick | Norro, Alain | Slabbekoorn, Hans
Anthropogenic noise in the oceans is disturbing marine life. Among other groups, pelagic fish are likely to be affected by sound from human activities, but so far have received relatively little attention. Offshore wind farms have become numerous and will become even more abundant in the next decades. Wind farms can be interesting to pelagic fish due to food abundance or fisheries restrictions. At the same time, construction of wind farms involves high levels of anthropogenic noise, likely disturbing and/or deterring pelagic fish. Here, we investigated whether bottom-moored echosounders are a suitable tool for studying the effects of impulsive – intermittent, high-intensity – anthropogenic noise on pelagic fish around wind farms and we explored the possible nature of their responses. Three different wind farms along the Dutch and Belgian coast were examined, one with exposure to the passing by of an experimental seismic survey with a full-scale airgun array, one with pile driving activity in an adjacent wind farm construction site and one control site without exposure. Two bottom-moored echosounders were placed in each wind farm and recorded fish presence and behaviour before, during and after the exposures. The echosounders were successful in detecting variation in the number of fish schools and their behaviour. During the seismic survey exposure there were significantly fewer, but more cohesive, schools than before, whereas during pile driving fish swam shallower with more cohesive schools. However, the types and magnitudes of response patterns were also observed at the control site with no impulsive sound exposure. We therefore stress the need for thorough replication beyond single case studies, before we can conclude that impulsive sounds, from either seismic surveys or pile driving, are a disturbing factor for pelagic fish in otherwise attractive habitat around wind farms.
显示更多 [+] 显示较少 [-]Characterization of submicron aerosols over the Yellow Sea measured onboard the Gisang 1 research vessel in the spring of 2018 and 2019
2021
Park, Minsu | Yum, Seong Soo | Kim, Najin | Jeong, Minju | Yoo, Hee-Jung | Kim, Jeong Eun | Park, Joonhyoung | Lee, Meehye | Sung, Minyoung | Ahn, Joonyoung
The physico-chemical properties of submicron aerosols were measured in the spring of 2018 and 2019 over the Yellow Sea onboard the Gisang 1 research vessel. Aerosol number concentrations in 2019 were slightly higher than those in 2018, and the mean number concentrations of particles larger than 10 nm and cloud condensation nuclei (CCN) at 0.6% supersaturation (S) in spring 2019 were 7312 ± 3807 cm⁻³ and 4816 ± 1692 cm⁻³, respectively. Aerosol concentrations in June were lower than those in April and May, which was considered to be due to the East Asian summer monsoon. Aerosol number concentrations and size distributions were significantly influenced by meteorological conditions, such as wind and relative humidity. Aitken and accumulation mode particles dominated the aerosol number size distributions over the Yellow Sea. A distinct new particle formation (NPF) and growth event was observed, the spatial extent of which was estimated to cover at least 200 km × 400 km of the Yellow Sea. The general characteristics of NPF and growth over the Yellow Sea were similar to those in rural areas. Aerosol number concentrations below 1000 cm⁻³ were recorded on extremely clean days. A CCN closure experiment conducted using previous measurement data showed good results, indicating that CCN concentrations can be estimated with good accuracy, and the hygroscopicity over the Yellow Sea was similar to that of aged continental aerosols.
显示更多 [+] 显示较少 [-]Spatiotemporal differences in phosphorus release potential of bloom-forming cyanobacteria in Lake Taihu
2021
Wang, Mengmeng | Zhang, Huifen | Du, Caili | Zhang, Wei | Shen, Jianing | Yang, Shunqing | Yang, Liuyan
The abnormal elevation of cyanobacterial density and total phosphorus concentration after the reduction of exogenous pollutants in Lake Taihu is still an open question. An in-situ light-dark bottle method was used to investigate the spatiotemporal differences of phosphorus release potential of bloom-forming cyanobacteria (BFC) in Lake Taihu. Generalized additive model analysis (GAM) of field data revealed that the phosphorus release potential of BFC increased with the upregulation of Chlorophyll a (Chl-a) content per cell, which was further validated by the laboratory experiment results. We deduced that the accumulation of Chl-a content per cell might be an essential index of high phosphorus release potential of BFC. The phosphorus release potential of BFC was much higher in summer and autumn than that in spring and winter, while the phosphorus absorption potential increased with the rising of temperature. The distinct physiological status of BFC at different seasons brought about their variation in phosphorus release potential. Additionally, high phosphorus release potential of BFC region mainly concentrated in the eastern and the central, northwest, western, and the south of Lake Taihu in spring, summer, autumn, and winter, respectively. Further studies showed that the spatial differences in phosphorus release potential of BFC were most probably due to the horizontal drift of BFC driven by the prevailing wind. Collectively, the synergism of BFC’s physiological status and horizontal drift determined the spatiotemporal differences of phosphorus release potential of BFC in Lake Taihu. Moreover, apparent spatiotemporal differences in phosphorus release potential of BFC were essential factors that induced the distinct distribution of total phosphorus in Lake Taihu. This study provides insight for exploring the reason for the constant increase of total dissolved phosphorus concentration and cyanobacterial density in Lake Taihu for the past 5 years.
显示更多 [+] 显示较少 [-]