细化搜索
结果 1-10 的 350
Investigating the Influence of Urban River Valleys on Meteorological Parameters at the Local Scale as a Factor for urban sustainability - Case study: Farahzad River Valley 全文
2023
Allahyari, Hadis | Salehi, Esmael | Zebardast, Lobat | Jafari, Hamidreza
Four regions of the Farahzad River Valley with different topography were selected to fully survey it and study the effects of morphology on local climate. then one of the hot days of the month of June 2021 (June 6th) was selected because the wind speeds increase in spring. According to the comparison of the simulation results with the existing site plans, the temperature in area 3 was the highest, 39.60 degrees, and the wind speed was 3.57 m/s. On the other hand, the study and analysis of the maps showed that the temperature of the roads in regions 3 and 4 were higher than the other two regions with a temperature range of 37.69-38.40, so the presence of impervious asphalt surfaces on the roads is very effective in increasing the air temperature in these areas. Comparisons also showed that tall buildings and vegetation create shaded areas and increase wind speed. Based on this, two scenarios were designed. In the first scenario, doubling the height of buildings increased wind speed in Region 3 by 3.42 m/s and decreased temperatures by 1.59 degrees. In the second scenario, when tall trees were planted at certain distances around the streets, the temperature in Region 3 decreased by 1.68 degrees and the wind speed increased by 1.68 m/s. The results show that the differences in the topography of urban valleys cause ventilation of the environment and that the effect of this feature in other environments is more effective through planting than through buildings.
显示更多 [+] 显示较少 [-]Long-term trends in particulate matter from wood burning in the United Kingdom: Dependence on weather and social factors 全文
2022
Font, A. | Ciupek, K. | Butterfield, D. | Fuller, G.W.
Particulate matter from wood burning emissions (Cwₒₒd) was quantified at five locations in the United Kingdom (UK), comprising three rural and two urban sites between 2009 and 2021. The aethalometer method was used. Mean winter Cwₒₒd concentrations ranged from 0.26 μg m⁻³ (in rural Scotland) to 1.30 μg m⁻³ (London), which represented on average 4% (in rural environments) and 5% (urban) of PM₁₀ concentrations; and 8% of PM₂.₅. Concentrations were greatest in the evenings in winter months, with larger evening concentrations in the weekends at the urban sites. Random-forest (RF) machine learning regression models were used to reconstruct Cwₒₒd concentrations using both meteorological and temporal explanatory variables at each site. The partial dependency plots indicated that temperature and wind speed were the meteorological variables explaining the greatest variability in Cwₒₒd, with larger concentrations during cold and calm conditions. Peaks of Cwₒₒd concentrations took place during and after events that are celebrated with bonfires. These were Guy Fawkes events in the urban areas and on New Year's Day at the rural sites; the later probably related to long-range transport. Time series were built using the RF. Having removed weather influences, long-term trends of Cwₒₒd were estimated using the Theil Sen method. Trends for 2015–2021 were downward at three of the locations (London, Glasgow and rural Scotland), with rates ranging from −5.5% year⁻¹ to −2.5% year⁻¹. The replacement of old fireplaces with lower emission wood stoves might explain the decrease in Cwₒₒd especially at the urban sites The two rural sites in England observed positive trends for the same period but this was not statistically significant.
显示更多 [+] 显示较少 [-]Characteristics, source apportionment and long-range transport of black carbon at a high-altitude urban centre in the Kashmir valley, North-western Himalaya 全文
2022
Bhat, Mudasir Ahmad | Romshoo, Shakil Ahmad | Beig, Gufran
Six years of data (2012–2017) at an urban site-Srinagar in the Northwest Himalaya were used to investigate temporal variability, meteorological influences, source apportionment and potential source regions of BC. The daily BC concentration varies from 0.56 to 40.16 μg/m³ with an inter-annual variation of 4.20–7.04 μg/m³ and is higher than majority of the Himalayan urban locations. High mean annual BC concentration (6.06 μg/m³) is attributed to the high BC observations during winter (8.60 μg/m³) and autumn (8.31 μg/m³) with a major contribution from Nov (13.88 μg/m³) to Dec (13.4 μg/m³). A considerable inter-month and inter-seasonal BC variability was observed owing to the large changes in synoptic meteorology. Low BC concentrations were observed in spring and summer (3.14 μg/m³ and 3.21 μg/m³), corresponding to high minimum temperatures (6.6 °C and 15.7 °C), wind speed (2.4 and 1.6 m/s), ventilation coefficient (2262 and 2616 m²/s), precipitation (316.7 mm and 173.3 mm) and low relative humidity (68% and 62%). However, during late autumn and winter, frequent temperature inversions, shallow PBL (173–1042 m), stagnant and dry weather conditions cause BC to accumulate in the valley. Through the observation period, two predominant diurnal BC peaks were observed at ⁓9:00 h (7.75 μg/m³) and ⁓21:00 h (6.67 μg/m³). Morning peak concentration in autumn (11.28 μg/m³) is ⁓2–2.5 times greater than spring (4.32 μg/m³) and summer (5.23 μg/m³), owing to the emission source peaks and diurnal boundary layer height. Diurnal BC concentration during autumn and winter is 65% and 60% higher than spring and summer respectively. During autumn and winter, biomass burning contributes approximately 50% of the BC concentration compared to only 10% during the summer. Air masses transport considerable BC from the Middle East and northern portions of South Asia, especially the Indo-Gangetic Plains, to Srinagar, with serious consequences for climate, human health, and the environment.
显示更多 [+] 显示较少 [-]Morphological and chemical classification of fine particles over the Yellow Sea during spring, 2015–2018 全文
2022
Kwak, Nohhyeon | Lee, Haebum | Maeng, Hyunok | Seo, Arom | Lee, Kwangyul | Kim, Seojeong | Lee, Meehye | Cha, Joo Wan | Shin, Beomcheol | Park, Kihong
Airborne fine particles can affect climate change and human health; moreover, they can be transported over significant distances. However, studies on characteristics of individual particles and their morphology, elemental composition, aging processes, and spatial distribution after long-range transport over the Yellow Sea are limited. Therefore, in this study, we conducted shipborne measurements of fine particulate matter of less than 2.5 μm in diameter (PM₂.₅) over the Yellow Sea and classified the individual particles into seven types based on their morphology and composition. Overall, the percentage of organic-rich particles was the highest, followed by that of sea spray, sulfur-rich, dust, metals, fly ash, soot, and other particles. Near Shandong, China, the percentage of fly ash and sulfur-rich particles increased, while an increased percentage of only sulfur-rich particles was observed near the Korean Peninsula. In the open sea, the PM₂.₅ concentrations were the lowest, and sea spray particles predominated. During the cruises, three types (Types 1, 2, and 3) of events with substantially increased PM₂.₅ concentrations occurred, each with different dominant particles. Type 1 events frequently featured air masses from northern China and Mongolia with high wind speeds and increased dust particles. Type 2 events involved air masses from China with high wind speeds; fly ash, soot, organic-rich particles, and the sulfate percentage in PM₂.₅ increased. Type 3 events displayed stagnant conditions and local transport (from Korea); soot, dust particles, and the secondary sulfate and nitrate percentages in PM₂.₅ increased. Thus, different types of transport affected concentrations and dominant types of fine particles over the Yellow Sea during spring.
显示更多 [+] 显示较少 [-]Mass and number concentration distribution of marine aerosol in the Western Pacific and the influence of continental transport 全文
2022
Ma, Yining | Zhang, Xiangguang | Xin, Jinyuan | Zhang, Wenyu | Wang, Zifa | Liu, Quan | Wu, Fangkun | Wang, Lili | Lyu, Yilong | Wang, Qinglu | Ma, Yongjing
We quantify for the first time marine aerosol properties and their differences in the offshore and remote ocean in the mid-latitude South Asian waters, low-latitude South Asian waters, and equatorial waters of the Western Pacific Ocean, based on shipboard cruise observations conducted by the Western Pacific Ocean Scientific Observation Network in winter 2018, and further investigate the effects of long-range transport of continental aerosols on the marine environment. During the overall observation period, the average number concentration of particle matter which aerodynamic diameters<2.5 μm (PM₂.₅N) was 35.1 ± 87.4 cm⁻³ and the mass concentration (PM₂.₅M) was 12.3 ± 9.1 μg/m³. The PM₂.₅N and PM₂.₅M during the continental air mass transport period were 7.2 and 1.3 times higher than those during the non-transport period (109.2 ± 169.3 cm⁻³, 15.9 ± 14.9 μg/m³), respectively. Excluding transport period, the average PM₂.₅N and PM₂.₅M are reduced by 120% and 7%. Coarse mode particle number concentration (PM₂.₅–₁₀N) and mass concentration (PM₂.₅–₁₀M) are not significantly influenced by continental air masses (only a reduction of 7% and 2%). The variation of marine aerosol concentrations in different latitudes zones is greatly influenced by continental aerosol transport. The offshore PM₂.₅M/PM₁₀M was 30%, 21%, and 22% in the mid-latitude sea of South Asia, a low-latitude sea of South Asia, and the equatorial sea, respectively. In comparison, in the remote ocean, the distribution ratio of PM₂.₅M/PM₁₀M tended to be steady (22%–23%), and the background characteristics of marine aerosols were clearly represented. The aerosol concentration decreases with the increase of wind speed during the transport period, and the wind speed reflects the scavenging effect on aerosol. In the non-transport period, the wind speed at the sea surface promotes the generation of marine aerosols, and the impact in wind speed is strongest in the PM₂.₅–PM₅ particle size range.
显示更多 [+] 显示较少 [-]Vertical profiles of the transport fluxes of aerosol and its precursors between Beijing and its southwest cities 全文
2022
Hu, Qihou | Liu, Cheng | Li, Qihua | Liu, Ting | Ji, Xiangguang | Zhu, Yizhi | Xing, Chengzhi | Liu, Haoran | Tan, Wei | Gao, Meng
The influence of regional transport on aerosol pollution has been explored in previous studies based on numerical simulation or surface observation. Nevertheless, owing to inhomogeneous vertical distribution of air pollutants, vertical observations should be conducted for a comprehensive understanding of regional transport. Here we obtained the vertical profiles of aerosol and its precursors using ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) at the Nancheng site in suburban Beijing on the southwest transport pathway of the Beijing-Tianjin-Hebei (BTH) region, China, and then estimated the vertical profiles of transport fluxes in the southwest-northeast direction. The maximum net transport fluxes per unit cross-sectional area, calculated as pollutant concentration multiply by wind speed, of aerosol extinction coefficient (AEC), NO₂, SO₂ and HCHO were 0.98 km⁻¹ m s⁻¹, 24, 14 and 8.0 μg m⁻² s⁻¹ from southwest to northeast, which occurred in the 200–300 m, 100–200 m, 500–600 m and 500–600 m layers, respectively, due to much higher pollutant concentrations during southwest transport than during northeast transport in these layers. The average net column transport fluxes were 1200 km⁻¹ m² s⁻¹, 38, 26 and 15 mg m⁻¹ s⁻¹ from southwest to northeast for AEC, NO₂, SO₂ and HCHO, respectively, in which the fluxes in the surface layer (0–100 m) accounted for only 2.3%–4.2%. Evaluation only based on surface observation would underestimate the influence of the transport from southwest cities to Beijing. Northeast or weak southwest transports dominated in clean conditions with PM₂.₅ <75 μg m⁻³ and intense southwest transport dominated in polluted conditions with PM₂.₅ >75 μg m⁻³. Southwest transport through the middle boundary layer was a trigger factor for aerosol pollution events in urban Beijing, because it not only directly bringing air pollutants, but also induced an inverse structure of aerosols, which resulted in stronger atmospheric stability and aggravated air pollution in urban Beijing.
显示更多 [+] 显示较少 [-]Pathways for wintertime deposition of anthropogenic light-absorbing particles on the Central Andes cryosphere 全文
2021
Lapere, Rémy | Mailler, Sylvain | Menut, Laurent | Huneeus, Nicolás
Ice and snow in the Central Andes contain significant amounts of light-absorbing particles such as black carbon. The consequent accelerated melting of the cryosphere is not only a threat from a climate perspective but also for water resources and snow-dependent species and activities, worsened by the mega-drought affecting the region since the last decade. Given its proximity to the Andes, emissions from the Metropolitan Area of Santiago, Chile, are believed to be among the main contributors to deposition on glaciers. However, no evidence backs such an assertion, especially given the usually subsident and stable conditions in wintertime, when the snowpack is at its maximum extent. Based on high-resolution chemistry-transport modeling with WRF-CHIMERE, the present work shows that, for the month of July 2015, up to 40% of black carbon dry deposition on snow or ice covered areas in the Central Andes downwind from the Metropolitan area can be attributed to emissions from Santiago. Through the analysis of aerosol tracers we determine (i) that the areas of the Metropolitan Area where emissions matter most when it comes to export towards glaciers are located in Eastern Santiago near the foothills of the Andes, (ii) the crucial role of the network of Andean valleys that channels pollutants up to remote locations near glaciers, following gentle slopes. A direct corollary is that severe urban pollution, and deposition of impurities on the Andes, are anti-correlated phenomena. Finally, a two-variable meteorological index is developed that accounts for the dynamics of aerosol export towards the Andes, based on the zonal wind speed over the urban area, and the vertical diffusion coefficient in the valleys close to ice and snow covered terrain. Numerous large urban areas are found along the Andes so that the processes studied here can shed light on similar investigations for other glaciers-dependent Andean regions.
显示更多 [+] 显示较少 [-]Traditional and novel organophosphate esters (OPEs) in PM2.5 of a megacity, southern China: Spatioseasonal variations, sources, and influencing factors 全文
2021
Zeng, Yuan | Chen, She-Jun | Liang, Yao-Hui | Zhu, Chun-You | Liu, Zheng | Guan, Yu-Feng | Ma, Hui-Min | Mai, Bi-Xian
Organophosphate esters (OPEs) are ubiquitous contaminants in the environment, whereas their atmospheric processes and fate are poorly understood. The present study revealed the spatial heterogeneity and seasonal variations of traditional and novel OPEs in PM₂.₅ (particulate matter with diameters < 2.5 μm) across a megacity (including residential areas and potential source sites) in South China. Potential influencing factors on the contamination levels of OPEs were addressed. The total concentrations of 11 traditional OPEs ranging from 262 to 42,194 pg/m³ (median = 1872 pg/m³) were substantially higher than those of 10 novel OPEs (33.5–3835 pg/m³, median = 318 pg/m³). Significant spatial and temporal variations in the concentrations of most OPEs were observed. The overall district-specific contamination levels in this city showed dependence on the secondary industry sector for non-predominant OPEs and on the tertiary industry for predominant OPEs. The seasonal variations of the OPE concentrations suggest difference in their sources or influence of meteorological conditions. The correlations between the individual OPEs in PM₂.₅ are determined largely by either their applications or physicochemical properties (in particular vapor pressure). The correlations between OPE concentrations and each meteorological factor (temperature, relative humidity, wind speed, and surface solar radiation) were inconsistent (positive and negative). Wind speed had the greatest effect on the OPE levels; While most OPEs bound to PM₂.₅ were not efficiently scavenged by below-cloud rainfall. The results suggest that atmospheric half-life and Henry’s Law Constant of OPEs are also determining factors for the wind speed and rainfall influence, respectively. However, mechanisms underlying the influence of meteorological conditions on atmospheric OPEs still need further research.
显示更多 [+] 显示较少 [-]Modelling the oil spill transport in inland waterways based on experimental study 全文
2021
Jiang, Pinfeng | Tong, Sichen | Wang, Yiting | Xu, Guangxiang
Oil spills occurring either in oceans or inland waterways may cause serious economic losses and ecological damage. Previous studies pertaining to oil spills and their consequences are primarily based on marine environments, whereas few have focused on oil spills occurring in inland waterways characterised by pronounced flow advection transport effects, which differ from the marine environment. A generalised flume experiment is performed to investigate the spread and transport of oil spills, and the relationships between the area and thickness of oil slick over time are analysed parametrically. An oil spill model combined with a depth–integrated two–dimensional non–uniform flow model, which is suitable for modelling inland waterways based on the Lagrangian method, is established; it is calibrated and verified using measured data from the flume experiment. The model is applied to three scenarios on the Luoqi reach of the Yangtze River, and spilled oil drifting trajectory maps are obtained and analysed considering the field wind parameters. The results show that the drift distance of the oil slick in the inland waterway is primarily controlled by the flow velocity with effects of advection transport; however, the oil spill trajectory spreads toward the wind direction when the flow velocity is relatively small compared with the wind speed. The results of this study serve as a reference for predicting the spread and transport of oil spills in inland waterways.
显示更多 [+] 显示较少 [-]Ozone pollution mitigation in guangxi (south China) driven by meteorology and anthropogenic emissions during the COVID-19 lockdown 全文
2021
Fu, Shuang | Guo, Meixiu | Fan, Linping | Deng, Qiyin | Han, Deming | Wei, Ye | Luo, Jinmin | Qin, Guimei | Cheng Jinping,
With the implementation of COVID-19 restrictions and consequent improvement in air quality due to the nationwide lockdown, ozone (O₃) pollution was generally amplified in China. However, the O₃ levels throughout the Guangxi region of South China showed a clear downward trend during the lockdown. To better understand this unusual phenomenon, we investigated the characteristics of conventional pollutants, the influence of meteorological and anthropogenic factors quantified by a multiple linear regression (MLR) model, and the impact of local sources and long-range transport based on a continuous emission monitoring system (CEMS) and the HYSPLIT model. Results show that in Guangxi, the conventional pollutants generally declined during the COVID-19 lockdown period (January 24 to February 9, 2020) compared with their concentrations during 2016–2019, while O₃ gradually increased during the resumption (10 February to April 2020) and full operation periods (May and June 2020). Focusing on Beihai, a typical Guangxi region city, the correlations between the daily O₃ concentrations and six meteorological parameters (wind speed, visibility, temperature, humidity, precipitation, and atmospheric pressure) and their corresponding regression coefficients indicate that meteorological conditions were generally conducive to O₃ pollution mitigation during the lockdown. A 7.84 μg/m³ drop in O₃ concentration was driven by meteorology, with other decreases (4.11 μg/m³) explained by reduced anthropogenic emissions of O₃ precursors. Taken together, the lower NO₂/SO₂ ratios (1.25–2.33) and consistencies between real-time monitored primary emissions and ambient concentrations suggest that, with the closure of small-scale industries, residual industrial emissions have become dominant contributors to local primary pollutants. Backward trajectory cluster analyses show that the slump of O₃ concentrations in Southern Guangxi could be partly attributed to clean air mass transfer (24–58%) from the South China Sea. Overall, the synergistic effects of the COVID-19 lockdown and meteorological factors intensified O₃ reduction in the Guangxi region of South China.
显示更多 [+] 显示较少 [-]