细化搜索
结果 1-10 的 370
Ameliorative effects of plant growth promoting bacteria, zinc oxide nanoparticles and oxalic acid on Luffa acutangula grown on arsenic enriched soil
2022
Tanveer, Yashfa | Yasmin, Humaira | Nosheen, Asia | Ali, Sajad | Ahmad, Ajaz
Arsenic (As) contamination and bioaccumulation are a serious threat to agricultural plants. To address this issue, we checked the efficacy of As tolerant plant growth promoting bacteria (PGPB), zinc oxide nanoparticles (ZnO NPs) and oxalic acid (OA) in Luffa acutangula grown on As rich soil. The selected most As tolerant PGPB i.e Providencia vermicola exhibited plant growth promoting features i.e solubilzation of phosphate, potassium and siderophores production. Innovatively, we observed the synergistic effects of P. vermicola, ZnO NPs (10 ppm) and OA (100 ppm) in L. acutangula grown on As enriched soil (150 ppm). Our treatments both as alone and in combination alleviated As toxicity exhibited by better plant growth and metabolism. Results revealed significantly enhanced photosynthetic pigments, proline, relative water content, total sugars, proteins and indole acetic acid along with As amelioration in L. acutangula. Furthermore, upregulated plant resistance was manifested with marked reduction in the lipid peroxidation and electrolyte leakage and pronounced antagonism of As and zinc content in leaves under toxic conditions. These treatments also improved level of nutrients, abscisic acid and antioxidants to mitigate As toxicity. This marked improvement in plants’ defense mechanism of treated plants under As stress is confirmed by less damaged leaves cell structures observed through the scanning electron micrographs. We also found substantial decrease in the As bioaccumulation in the L. acutangula shoots and roots by 40 and 58% respectively under the co-application of P. vermicola, ZnO NPs and OA in comparison with control. Moreover, the better activity of soil phosphatase and invertase was assessed under the effect of our application. These results cast a new light on the application of P. vermicola, ZnO NPs and OA in both separate and combined form as a feasible and ecofriendly tool to alleviate As stress in L. acutangula.
显示更多 [+] 显示较少 [-]Outdoor light at night, overweight, and obesity in school-aged children and adolescents
2022
Lin, Li-Zi | Zeng, Xiao-Wen | Deb, Badhan | Tabet, Maya | Xu, Shu-Li | Wu, Qi-Zhen | Zhou, Yang | Ma, Hui-Min | Chen, Duo-Hong | Chen, Gong-Bo | Yu, Hong-Yao | Yang, Bo-Yi | Hu, Qiang | Yu, Yun-Jiang | Dong, Guang-Hui | Hu, Liwen
Previous studies have indicated that outdoor light at night (LAN) is associated with a higher prevalence of overweight or obesity in adults. However, the association of LAN levels with overweight or obesity in children is still unknown. This study utilized data from the Seven Northeastern Cities study, which included 47,990 school-aged children and adolescents (ages 6–18 years). Outdoor LAN levels were measured using satellite imaging data. Weight and height were used to calculate age-sex-specific body mass index (BMI) Z-scores based on the World Health Organization (WHO) growth standards. Overweight status and obesity were defined using the Chinese standard. Information regarding socioeconomic status, sleep-related characteristics, and obesogenic factors were obtained using a questionnaire. A generalized linear mixed model examined the associations of outdoor LAN levels (in quartiles) with the outcomes of interest. Compared to children in the lowest quartile of outdoor LAN levels, children exposed to higher outdoor LAN levels had larger BMI Z-scores and higher odds of being overweight (including obesity) or obese, with the largest estimates in the third quartile [BMI Z-score: β = 0.26, 95% CI: 0.18–0.33; overweight (including obesity): OR = 1.40, 95% CI: 1.25–1.56; obesity: OR = 1.46, 95% CI: 1.29–1.65]. There was a significant sex difference (Pᵢₙₜₑᵣₐcₜᵢₒₙ<0.001) in the association of outdoor LAN levels with BMI Z-scores, and the association was stronger in males. Results remained robust following multiple sensitivity analyses and the adjustment of sleep-related characteristics, obesogenic factors, and environmental exposures. Our findings suggest that higher outdoor LAN levels are associated with larger BMI Z-scores and greater odds of overweight (including obesity) and obesity in school-aged children and adolescents. Further, the association between outdoor LAN levels and BMI Z-scores is stronger in males. Future studies with exposure assessments that consider both outdoor and indoor LAN exposures are needed.
显示更多 [+] 显示较少 [-]Long-term trends of atmospheric hot-and-polluted episodes (HPE) and the public health implications in the Pearl River Delta region of China
2022
Nduka, Ifeanyichukwu C. | Huang, Tao | Li, Zhiyuan | Yang, Yuanjian | Yim, Steve H.L.
Air pollution and extreme heat have been responsible for more than a million deaths in China every year, especially in densely urbanized regions. While previous studies intensively evaluated air pollution episodes and extreme heat events, a limited number of studies comprehensively assessed atmospheric hot-and-polluted-episodes (HPE) – an episode with simultaneously high levels of air pollution and temperature – which have potential adverse synergic impacts on human health. This study focused on the Pearl River Delta (PRD) region of China due to its high temperature in summer and poor air quality throughout a year. We employed geostatistical downscaling to model meteorology at a spatial resolution of 1 km, and applied a machine learning algorithm (XGBoost) to estimate a high-resolution (1 km) daily concentration of particulate matter with an aerodynamic diameter ≤2.5 μm (PM₂.₅) and ozone (O₃) for June to October over 20 years (2000–2019). Our results indicate an increasing trend (∼50%) in the frequency of HPE occurrence in the first decade (2000–2010). Conversely, the annual frequency of HPE occurrence reduced (16.7%), but its intensity increased during the second decade (2010–2019). The northern cities in the PRD region had higher levels of PM₂.₅ and O₃ than their southern counterparts. During HPEs, regional daily PM₂.₅ exceeded the World Health Organization (WHO) and Chinese guideline levels by 75% and 25%, respectively, while the O₃ exceeded the WHO O₃ standard by up to 69%. Overall, 567,063 (95% confidence interval (CI): 510,357–623,770) and 52,231 (95%CI: 26,116–78,346) excessive deaths were respectively attributable to exposure to PM₂.₅ and O₃ in the PRD region. Our findings imply the necessity and urgency to formulate co-benefit policies to mitigate the region's air pollution and heat problems.
显示更多 [+] 显示较少 [-]Emerging organic contaminants in groundwater under a rapidly developing city (Patna) in northern India dominated by high concentrations of lifestyle chemicals
2021
Richards, Laura A. | Kumari, Rupa | White, Debbie | Parashar, Neha | Kumar, Arun | Ghosh, Ashok | Sumant Kumar, | Chakravorty, Biswajit | Lu, Chuanhe | Civil, Wayne | Lapworth, Dan J. | Krause, Stephan | Polya, David A. | Gooddy, Daren C.
Aquatic pollution from emerging organic contaminants (EOCs) is of key environmental importance in India and globally, particularly due to concerns of antimicrobial resistance, ecotoxicity and drinking water supply vulnerability. Here, using a broad screening approach, we characterize the composition and distribution of EOCs in groundwater in the Gangetic Plain around Patna (Bihar), as an exemplar of a rapidly developing urban area in northern India. A total of 73 EOCs were detected in 51 samples, typically at ng.L⁻¹ to low μg.L⁻¹ concentrations, relating to medical and veterinary, agrochemical, industrial and lifestyle usage. Concentrations were often dominated by the lifestyle chemical and artificial sweetener sucralose. Seventeen identified EOCs are flagged as priority compounds by the European Commission, World Health Organisation and/or World Organisation for Animal Health: namely, herbicides diuron and atrazine; insecticides imidacloprid, thiamethoxam, clothianidin and acetamiprid; the surfactant perfluorooctane sulfonate (and related perfluorobutane sulfonate, perfluorohexane sulfonate, perfluorooctanoic acid and perfluoropentane sulfonate); and medical/veterinary compounds sulfamethoxazole, sulfanilamide, dapson, sulfathiazole, sulfamethazine and diclofenac. The spatial distribution of EOCs varies widely, with concentrations declining with depth, consistent with a strong dominant vertical flow control. Groundwater EOC concentrations in Patna were found to peak within ∼10 km distance from the River Ganges, indicating mainly urban inputs with some local pollution hotspots. A heterogeneous relationship between EOCs and population density likely reflects confounding factors including varying input types and controls (e.g. spatial, temporal), wastewater treatment infrastructure and groundwater abstraction. Strong seasonal agreement in EOC concentrations was observed. Co-existence of limited transformation products with associated parent compounds indicate active microbial degradation processes. This study characterizes key controls on the distribution of groundwater EOCs across the urban to rural transition near Patna, as a rapidly developing Indian city, and contributes to the wider understanding of the vulnerability of shallow groundwater to surface-derived contamination in similar environments.
显示更多 [+] 显示较少 [-]Mercury contamination status of rice cropping system in Pakistan and associated health risks
2020
Aslam, Muhammad Wajahat | Ali, Waqar | Meng, Bo | Abrar, Muhammad Mohsin | Lu, Benqi | Qin, Chongyang | Zhao, Lei | Feng, Xinbin
Rice is a known bioaccumulator of methylmercury (MeHg). Rice consumption may be the primary pathway of MeHg exposure in certain mercury (Hg)-contaminated areas of the world. Pakistan is the 4th-largest rice exporter in the world after India, Thailand, and Vietnam. This study aimed to evaluate the Hg contamination status of rice from Pakistan and the health risks associated with Hg exposure through its consumption. 500 rice grain samples were collected from two major rice-growing provinces, Punjab and Sindh, which contain 92% of Pakistan’s rice cultivation area. Analysis of polished rice showed mean total Hg (THg) concentration of 4.51 ng.g⁻¹, while MeHg concentrations of selected samples averaged 3.71 ng.g⁻¹. Only 2% of the samples exceeded the permissible limit of 20 ng.g⁻¹. Samples collected from Punjab showed higher Hg contents than those from Sindh, possibly due to higher rates of urbanization and industrialization. Rice samples collected from areas near brick-making kilns had the highest Hg concentrations due to emissions from the low-quality coal burned. THg and MeHg contents varied by up to five and fourfold, respectively, between point and non-point Hg pollution sites. Moreover, the %Hg as MeHg in rice did not differ significantly between point and non-point Hg sources. Health risk was assessed by calculating a mean probable daily intake, revealing that Hg intake through rice consumption is within the safe limits recommended by the World Health Organization. However, rice intake may be a substantive pathway of MeHg exposure because fish, which are another major source of Hg, are consumed in Pakistan at some of the world’s lowest rates. This study provides fundamental data for further understanding of the global issue of Hg contamination of rice and its related health risks. Furthermore, the current study suggests there is a need to conduct further research in rice-growing areas at the regional level.
显示更多 [+] 显示较少 [-]Air quality during the COVID-19: PM2.5 analysis in the 50 most polluted capital cities in the world
2020
Rodríguez-Urrego, Daniella | Rodríguez-Urrego, Leonardo
On December 31, 2019, the Chinese authorities reported to the World Health Organization (WHO) the outbreak of a new strain of coronavirus that causes a serious disease in the city of Wuhan, China. This outbreak was classified as SARS-CoV2 and is the cause of the COVID-19 disease. On March 11, 2020, the WHO declares it a Pandemic and today it is considered the greatest challenge in global health that humanity has faced since World War II and it is estimated that between 40 and 60% of the population worldwide will catch the virus. This has caused enormous challenges in countries around the world in social, economic, environmental and obviously health issues. These challenges are mainly due to the effects of the established quarantines in almost all capitals and major cities around the world, from Asia, Europe to America. However, these lockdown which began worldwide from January 23, have had a significant impact on the environment and on the air quality of cities as recently reported by NASA (National Aeronautics and Space Administration) and ESA (European Space Agency), with reductions according to them of up to 30% in some of the epicenters such as the case of Wuhan. Knowing that air pollution causes approximately 29% of lung cancer deaths, 43% of COPD deaths, and 25% of ischemic heart disease deaths, it is important to know the effects of quarantines in cities regarding air quality to take measures that favor populations and urban ecosystems when the emergency ends. Therefore, this paper describes the behavior of PM₂.₅ emissions particulate matter from the 50 most polluted capital cities in the world according to the WHO, measured before-after the start of the quarantine. Likewise, the impact at the local and global level of this emissions behavior, which averaged 12% of PM₂.₅ decrease in these cities.
显示更多 [+] 显示较少 [-]Hydrogeochemical controls on arsenic mobility in an arid inland basin, Southeast of Iran: The role of alkaline conditions and salt water intrusion
2019
Dehbandi, Reza | Abbasnejad, Ahmad | Karimi, Zohreh | Herath, Indika | Bundschuh, Jochen
Elevated inorganic arsenic concentrations in groundwater has become a major public and environmental health concern in different parts of the world. Currently, As-contaminated groundwater issue in many countries and regions is a major topic for publications at global level. However, there are many regions worldwide where the problem has still not been resolved or fully understood due to inadequate hydrogeochemical investigations. Hence, this study evaluates for the first time the hydrogeochemical behavior of the arid and previously unexplored inland basin of Sirjan Plain, south east (SE) Iran, in order to assess the controlling factors which influence arsenic (As) mobility and its distribution through groundwater resources. Total inorganic arsenic concentration was measured using inductive-coupled plasma optical emission spectrometry (ICP-OES). Arsenic content in groundwater of this region ranged between 2.4 and 545.8 μg/L (mean value: 86.6 μg/L) and 50% of the samples exceeded the World Health Organization (WHO) guideline value of 10 μg/L in drinking water. Groundwater was mainly of Na-Cl type and alkaline due to silicate weathering, ion exchange and evaporation in arid conditions. Elevated As concentrations were generally observed under weakly alkaline to alkaline conditions (pH > 7.4). Multivariate statistical analysis including cluster analysis and bi-plot grouped As with pH and HCO3 and demonstrated that the secondary minerals including oxyhydroxides of Fe are the main source of As in groundwater in this region. The desorption of As from these mineral phases occurs under alkaline conditions in oxidizing arid environments thereby leading to high levels of As in groundwater. Moreover, evaporation, ion exchange and saltwater intrusion were the secondary processes accelerating As release and its mobility in groundwater. Based on the results of this study, desorption of As from metal oxy-hydroxides surfaces under alkaline conditions, evaporation and intrusion of As-rich saline water are considered to be the major factors causing As enrichment in arid inland basins such as those in southeast Iran. This study proposes the regular monitoring and proper groundwater management practices to mitigate high levels of arsenic in groundwater and related drinking water wells of Sirjan Plain.
显示更多 [+] 显示较少 [-]First polychlorinated biphenyls (PCBs) monitoring in seawater, surface sediments and marine fish communities of the Persian Gulf: Distribution, levels, congener profile and health risk assessment
2019
Ranjbar Jafarabadi, Ali | Riyahi Bakhtiari, Alireza | Mitra, Soumita | Maisano, Maria | Cappello, Tiziana | Jadot, Catherine
Polychlorinated biphenyls (PCBs) are persistent organic pollutants that, due to their high toxicity, lipophilic property and widespread dispersal in the global environment, present a danger for human health and ecological systems. Although the inventory and use of PCBs are extensively reported worldwide, the status of PCBs in Iran is still unknown. In this study, the concentrations of PCBs were determined in the environmental matrices and in five commercially important fish species from Larak coral Island, Persian Gulf, Iran, in winter and summer 2015. A positive correlation was found among PCBs levels and congeners profiles in seawater (0.97–3.10 ng L⁻¹), surface sediments (2.95–7.95 ng g⁻¹dw) and fish samples (7.20–90.19 ng g⁻¹dw), indicating fish as suitable bioindicator of environmental PCBs contamination. In all matrices, a high contribution of light and medium chlorinated congeners was detected in both seasons. In fish, the higher PCBs levels were found for both sexes in both seasons in liver and kidney than other tissues (skin, gonad, muscle) due to their high lipid content and PCBs lipophilicity. More importantly, the risks for human health associated with fish consumption were also evaluated, and it was found that all the toxicity indices measured for PCBs were within the World Health Organization (WHO) permissible limit of food consumption. However, it is highly recommended to inform the local population about potential risks attributable to dietary incorporation of locally caught fish, and establish a surveillance monitoring programme on PCBs in this region.
显示更多 [+] 显示较少 [-]Assessment of airborne enteric viruses emitted from wastewater treatment plant: Atmospheric dispersion model, quantitative microbial risk assessment, disease burden
2019
Pasalari, Hasan | Ataei-Pirkooh, Angila | Aminikhah, Mahdi | Jafari, Ahmad Jonidi | Farzadkia, Mahdi
From a health prospective, it is critical to provide a comprehensive model which integrates all the parameters involved in virus transmission and its consequences on human body. In order to estimate the health risks, for workers and residents, associated with an exposure airborne viruses emitted from a wastewater treatment (WWTP), the concentration levels of viruses in emitted bioaerosols over a twelve-month period were measured by real-time polymerase chain reaction (RT-PCR). A combined Gaussian plum dispersion model and quantitative microbial risk assessment (QMRA) with Monte-Carlo simulation served as suitable explanatory tools to estimate the risk of acquiring gastrointestinal illness (GI) due to exposure to air containing Rotavirus (RoV) and Norovirus (NoV) bioaerosols. Additionally, DALY metric was applied to quantify the disability and mortality for workers and residents. RoV and NoV were detected above aeration tank with annual mean concentration 27 and 3099 (Viruses/m³.h), respectively. The medium calculated DALY indicator based on viral loads in contaminant source (RoV:5.76 × 10⁻² and NoV:1.23 × 10⁻¹) and estimated in different distances away (300–1000 m) (RoV:2.87 × 10⁻²- 2.75 × 10⁻² and NoV:1.14 × 10⁻¹-1.13 × 10⁻¹) were markedly higher than the threshold values recommended by US EPA (10⁻⁴ DALY pppy) and WHO (10⁻⁶ DALY pppy). The sensitivity analysis highlighted dose exposure and disease burden per case (DBPC) as two most influential factors for both workers and residents following exposure to two pathogens of concern. Due to high resistance and high concentration in the environment, the presence of RoV and NoV can intensify the consequences of diarrhea especially for children under five years of age; A comprehensible and transparent presentation of DALYs and QMRA can help decision makers and responsibilities to justify the priorities of exposure to wastewater in comparison with other risks of daily life.
显示更多 [+] 显示较少 [-]Elucidating various geochemical mechanisms drive fluoride contamination in unconfined aquifers along the major rivers in Sindh and Punjab, Pakistan
2019
Ali, Waqar | Aslam, Muhammad Wajahat | Junaid, Muhammad | Ali, Kamran | Guo, Yongkun | Rasool, Atta | Zhang, Hua
The present study aims to investigate the spatial distribution and associated various geochemical mechanisms responsible for fluoride (F⁻) contamination in groundwater of unconfined aquifer system along major rivers in Sindh and Punjab, Pakistan. The concentration of F⁻ in groundwater samples ranged from 0.1 to 3.9 mg/L (mean = 1.0 mg/L) in Sindh and 0.1–10.3 mg/L (mean = 1.0 mg/L) in Punjab, respectively with 28.9% and 26.6% of samples exhibited F⁻ contamination beyond WHO permissible limit value (1.5 mg/L). The geochemical processes regulated F⁻ concentration in unconfined aquifer mainly in Sindh and Punjab were categorized as follows: 1) minerals weathering that observed as the key process to control groundwater chemistry in the study areas, 2) the strong correlation between F⁻ and alkaline pH, which provided favorable environmental conditions to promote F⁻ leaching through desperation or by ion exchange process, 3) the 72.6% of samples from Sindh and Punjab were dominated by Na⁺- Cl⁻ type of water, confirmed that the halite dissolution process was the major contributor for F⁻ enrichment in groundwater, 4) dolomite dissolution was main process frequently observed in Sindh, compared with Punjab, 5) the arid climatic conditions promote evaporation process or dissolution of evaporites or both were contributing to the formation of saline groundwater in the study area, 6) the positive correlation observed between elevated F⁻ and fluorite also suggested that the fluorite dissolution also played significant role for leaching of F⁻ in groundwater from sediments, and 7) calcite controlled Ca2⁺ level and enhanced the dissolution of F-bearing minerals and drive F⁻ concentration in groundwater. In a nut shell, this study revealed the worst scenarios of F⁻ contamination via various possible geochemical mechanisms in groundwater along major rivers in Sindh and Punjab, Pakistan, which need immediate attention of regulatory authorities to avoid future hazardous implications.
显示更多 [+] 显示较少 [-]